首页> 外文期刊>Smart Materials & Structures >Fluidic origami: a plant-inspired adaptive structure with shape morphing and stiffness tuning
【24h】

Fluidic origami: a plant-inspired adaptive structure with shape morphing and stiffness tuning

机译:流体折纸:具有形状变形和刚度调整的植物灵感自适应结构

获取原文
获取原文并翻译 | 示例
       

摘要

Inspired by the physics behind the rapid plant movements and the rich topologies in origami folding, this research creates a unique class of multi-functional adaptive structure through exploring the innovation of fluidic origami. The idea is to connect multiple Miura folded sheets along their crease lines into a space-filling structure, and fill the tubular cells in-between with working fluids. The pressure and fluid flow in these cells can be strategically controlled much like in plants for nastic movements. The relationship between the internal fluid volume and the overall structure deformation is primarily determined by the kinematics of folding. This relationship can be exploited so that fluidic origami can achieve actuation/morphing by actively changing the internal fluid volume, and stiffness tuning by constraining the fluid volume. In order to characterize the working principles and performance potentials of these two adaptive functions, this research develops an equivalent truss frame model on a fluidic origami unit cell to analyze its fundamental elastic characteristics. Eigen-stiffness analysis based on this model reveals the primary modes of deformation and their relationships with initial folding configurations. Performances of the adaptive functions are correlated to the crease pattern design. In parallel to analytical studies, the feasibility of the morphing and stiffness tuning is also examined experimentally via a 3D printed multi-material prototype demonstrator. The research reported in this paper could lead to the synthesis of adaptive fluidic origami cellular metastructures or metamaterial systems for various engineering applications.
机译:受到快速的植物运动和折纸折叠中丰富的拓扑背后的物理学的启发,这项研究通过探索流体折纸的创新创造了独特的一类多功能自适应结构。这个想法是将多张Miura折叠的折页沿着折痕线连接到一个空间填充结构中,并在其间填充管状液体。这些细胞中的压力和流体流动可以像在用于鼻腔运动的植物中一样,被策略性地控制。内部流体体积与整体结构变形之间的关系主要取决于折叠的运动学。可以利用这种关系,以便流体的折纸可以通过主动地改变内部流体体积来实现致动/变形,并且可以通过约束流体体积来实现刚度调整。为了表征这两个自适应功能的工作原理和性能潜力,本研究在流体折纸单元格上开发了等效的桁架框架模型,以分析其基本弹性特征。基于该模型的本征刚度分析揭示了变形的主要模式及其与初始折叠构型的关系。自适应功能的性能与折痕图案设计相关。与分析研究同时,还通过3D打印的多材料原型演示器通过实验检查了变形和刚度调整的可行性。本文报道的研究可能导致针对各种工程应用的自适应流体折纸细胞元结构或超材料系统的综合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号