首页> 外文期刊>Smart Materials & Structures >Multifield analysis of a piezoelectric valveless micropump: Effects of actuation frequency and electric potential
【24h】

Multifield analysis of a piezoelectric valveless micropump: Effects of actuation frequency and electric potential

机译:压电无阀微型泵的多场分析:激励频率和电势的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Coupled multifield analysis of a piezoelectrically actuated valveless micropump device is carried out for liquid (water) transport applications. The valveless micropump consists of two diffuserozzle elements; the pump chamber, a thin structural layer (silicon), and a piezoelectric layer, PZT-5A as the actuator. We consider two-way coupling of forces between solid and liquid domains in the systems where actuator deflection causes fluid flow and vice versa. Flow contraction and expansion (through the nozzle and the diffuser respectively) generate net fluid flow. Both structural and flow field analysis of the microfluidic device are considered. The effect of the driving power (voltage) and actuation frequency on silicon-PZT-5A bi-layer membrane deflection and flow rate is investigated. For the compressible flow formulation, an isothermal equation of state for the working fluid is employed. The governing equations for the flow fields and the silicon-PZT-5A bi-layer membrane motions are solved numerically. At frequencies below 5000Hz, the predicted flow rate increases with actuation frequency. The fluidsolid system shows a resonance at 5000Hz due to the combined effect of mechanical and fluidic capacitances, inductances, and damping. Time-averaged flow rate starts to drop with increase of actuation frequency above (5000Hz). The velocity profile in the pump chamber becomes relatively flat or plug-like, if the frequency of pulsations is sufficiently large (high Womersley number). The pressure, velocity, and flow rate prediction models developed in the present study can be utilized to optimize the design of MEMS based micropumps.
机译:针对液体(水)输送应用,进行了压电驱动的无阀微型泵装置的耦合多场分析。无阀微型泵由两个扩散器/喷嘴元件组成。泵腔,薄结构层(硅)和压电层PZT-5A作为执行器。我们考虑在致动器偏转导致流体流动,反之亦然的系统中,固体和液体域之间的力双向耦合。流体的收缩和膨胀(分别通过喷嘴和扩散器)产生净流体流。考虑了微流体装置的结构和流场分析。研究了驱动功率(电压)和驱动频率对硅-PZT-5A双层膜的挠度和流速的影响。对于可压缩的流动配方,采用了工作流体的等温状态方程。数值求解了流场和硅-PZT-5A双层膜运动的控制方程。在低于5000Hz的频率下,预测的流量会随启动频率而增加。由于机械和流体电容,电感和阻尼的综合作用,流固系统在5000Hz处显示出共振。随时间推移,平均流量随着驱动频率(5000Hz)以上的增加而开始下降。如果脉动频率足够大(高沃默斯利数),则泵室中的速度分布会变得相对平坦或呈塞子状。在本研究中开发的压力,速度和流速预测模型可用于优化基于MEMS的微型泵的设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号