首页> 外文期刊>Smart Materials & Structures >An enhanced frequency-shift-based damage identification method using tunable piezoelectric transducer circuitry
【24h】

An enhanced frequency-shift-based damage identification method using tunable piezoelectric transducer circuitry

机译:使用可调压电换能器电路的基于频移的增强损伤识别方法

获取原文
获取原文并翻译 | 示例
           

摘要

Frequency-shift-based structural damage identification has been explored extensively in recent years. The performance of current practices, however, is still limited for several reasons, one of which is that the number of measurable modal frequencies is usually much smaller than the number of system parameters required to characterize the damage. In this study, the state of the art of frequency-shift-based damage identification is advanced by incorporating a tunable piezoelectric transducer circuitry into the structure to enrich the modal frequency measurements, meanwhile implementing a high-order identification algorithm to sufficiently utilize the enriched information. By integrating tunable piezoelectric transducer circuitry into the structure, we can introduce additional resonant peaks into the system frequency response function, and these additional peaks can be placed/adjusted over the frequency band by tuning the inductance. Clearly, a significantly increased amount of frequency shift information can be expected to reflect the damage effect. An iterative second-order perturbation-based algorithm in conjunction with an optimization scheme is then used to find the damaged-induced stiffness parameter reduction based on the system eigenvalue changes (frequency shift) before and after the structural damage occurrence. The major advantage of using this algorithm is that it takes into account the damage-induced mode shape changes without the actual measurement of the modes. In a benchmark example, a series of analyses using a cantilever beam integrated with a tunable piezoelectric transducer circuitry is carried out to demonstrate this proposed methodology and verify the performance. It is shown that the modal frequencies can be greatly enriched by inductance tuning, which, together with the high-order identification algorithm, leads to a fundamentally improved performance on the identification of single and multiple damages with the usage of only lower-order frequency measurements.
机译:近年来,基于频移的结构损伤识别已被广泛研究。但是,由于一些原因,当前实践的性能仍然受到限制,其中一个原因是,可测量模态频率的数量通常比表征损伤所需的系统参数的数量小得多。在这项研究中,通过将可调压电换能器电路整合到结构中以丰富模态频率测量,从而推进了基于频移的损坏识别技术的发展,同时实现了一种高阶识别算法,以充分利用丰富的信息。通过将可调压电换能器电路集成到结构中,我们可以在系统频率响应函数中引入额外的谐振峰,并且可以通过调谐电感在频带上放置/调整这些额外的峰。显然,可以期望频移信息的数量显着增加以反映损害效果。然后,基于迭代二阶扰动的算法与优化方案结合,基于结构损伤发生前后系统特征值的变化(频率偏移)来找到损伤引起的刚度参数的减小。使用此算法的主要优势在于,它无需考虑模态的实际测量即可将损坏引起的模态形状变化考虑在内。在一个基准示例中,使用悬臂梁与可调压电换能器电路集成在一起进行了一系列分析,以证明该提议的方法并验证性能。结果表明,通过电感调谐可以极大地丰富模态频率,这与高阶识别算法一起,仅使用低阶频率测量就可以从根本上提高识别单个和多个损伤的性能。 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号