首页> 外文学位 >Vibration-based structural damage identification enhancement via piezoelectric circuitry network and active feedback control.
【24h】

Vibration-based structural damage identification enhancement via piezoelectric circuitry network and active feedback control.

机译:通过压电电路网络和主动反馈控制增强基于振动的结构损伤识别。

获取原文
获取原文并翻译 | 示例

摘要

Vibration-based structural damage identification has been quite popular in recent years. Among all the vibration-based damage identification methods, the frequency-shift-based method is more preferred due to its simplicity and reliability. However, the current practice of frequency-shift-based damage identification encounters two severe limitations, namely, deficiency of frequency measurement data and low sensitivity of frequency shift to damage effects. Therefore, this thesis aims to advance the state-of-theart of the frequency-shift-based damage identification by addressing the aforementioned two limitations of this method.; First, a novel approach utilizing tunable piezoelectric circuitry is proposed to address the issue of deficiency of frequency measurement data. The key idea of this approach is to use the tunable piezoelectric circuitries coupled to the mechanical structure to favorably alter the dynamics of the electro-mechanical integrated system. On one hand, the integration of piezoelectric circuitries can introduce additional resonant frequencies and vibration modes into the frequency response function. On the other hand, tuning the circuitry elements (i.e., the inductors) may alter the dynamic characteristics of the electro-mechanical integrated system, and hence results in a family of frequency response function measurements. Thus, by integrating tunable piezoelectric circuitries to the structure and appropriately tuning the circuitry elements, one can obtain a much enlarged dataset of natural frequency measurements for damage identification. Guidelines on favorable inductance tuning that can yield the optimal damage identification performance are also developed. Analyses show that when the inductances are tuned to accomplish eigenvalue curve veerings between system eigenvalue pairs, the enriched frequency measurement data can most effectively capture the damage information, and hence results in the most accurate damage identification. An iterative second-order perturbation based algorithm is developed to identify the damage features (i.e., location and severity) from the measured frequency changes before and after damage occurrence. Numerical analyses and case studies on benchmark beam and plate structures are carried out to demonstrate and verify the proposed new method. Numerical results show that the damage identification performance can be significantly improved by using the proposed new approach with favorable inductance tuning.; To address the second issue, low sensitivity of frequency shifts to damage effects, another new approach based on the concept of sensitivity-enhancing feedback control is proposed. The key idea of this approach is to use active feedback control to appropriately assign the closed-loop eigenstructure (both eigenvalues and eigenvectors) to enhance the frequency sensitivity to mass/stiffness damage. To achieve the best performance of frequency sensitivity enhancement, a constrained optimization problem is formulated to find the optimal eigenstructure assignment for the closed-loop system, which leads to the optimal sensitivity-enhancing control. In addition, multiple closed-loop systems can be obtained from different sensitivity-enhancing controls, and these closed-loop systems provide a much enlarged dataset of natural frequency measurements for damage identification. Therefore, by designing a series of sensitivity-enhancing controls and utilizing the natural frequencies of the resulting closed-loop systems for damage identification, both of the two major limitations of the frequency-shift-based damage identification are overcome. Numerical analyses and case studies on a benchmark beam structure are carried out to demonstrate and verify the proposed new method. Results show that the frequency sensitivity to stiffness reduction in the beam can be significantly enhanced by applying sensitivity-enhancing control to the beam structure. It is also demonstrated that the proposed method is ef
机译:近年来,基于振动的结构损伤识别非常流行。在所有基于振动的损伤识别方法中,基于频移的方法由于其简单性和可靠性而更为可取。然而,基于频移的损伤识别的当前实践遇到两个严重的限制,即频率测量数据的缺乏和频移对损伤效应的敏感性低。因此,本论文旨在通过解决该方法的上述两个局限性来提高基于频移的损伤识别的最新技术水平。首先,提出了一种利用可调压电电路的新颖方法来解决频率测量数据不足的问题。这种方法的关键思想是使用与机械结构耦合的可调压电电路,以有利地改变机电集成系统的动力学。一方面,压电电路的集成可以将附加的谐振频率和振动模式引入频率响应函数。另一方面,调谐电路元件(即,电感器)可改变机电集成系统的动态特性,并因此导致一系列频率响应函数测量。因此,通过将可调压电电路集成到结构中并适当地调整电路元件,可以获取自然频率测量值的大得多的数据集以进行损伤识别。还制定了有关可产生最佳损伤识别性能的有利电感调整的准则。分析表明,当调谐电感以完成系统特征值对之间的特征值曲线变化时,丰富的频率测量数据可以最有效地捕获损伤信息,从而导致最准确的损伤识别。开发了一种基于迭代二阶扰动的算法,以根据发生破坏之前和之后测得的频率变化来识别破坏特征(即位置和严重性)。对基准梁和板结构进行了数值分析和案例研究,以证明和验证所提出的新方法。数值结果表明,采用提出的具有良好电感调谐特性的新方法可以显着提高损伤识别性能。为了解决第二个问题,即频移对损伤效应的低灵敏度,提出了另一种基于灵敏度增强反馈控制概念的新方法。这种方法的关键思想是使用主动反馈控制来适当分配闭环特征结构(特征值和特征向量),以增强对质量/刚度损伤的频率敏感性。为了获得最佳的频率灵敏度增强性能,提出了一个约束优化问题,以找到闭环系统的最佳本征结构分配,从而实现了最佳的灵敏度增强控制。另外,可以从不同的灵敏度增强控件中获得多个闭环系统,这些闭环系统提供了自然频率测量值的大得多的数据集,用于损伤识别。因此,通过设计一系列提高灵敏度的控件并利用所得闭环系统的固有频率进行损伤识别,可以克服基于频移的损伤识别的两个主要限制。对基准梁结构进行了数值分析和案例研究,以论证和验证所提出的新方法。结果表明,通过对梁结构应用灵敏度增强控制,可以显着提高梁的频率对刚度减小的灵敏度。还证明了该方法是有效的

著录项

  • 作者

    Jiang, Lijun.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Applied Mechanics.; Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 224 p.
  • 总页数 224
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用力学;机械、仪表工业;
  • 关键词

  • 入库时间 2022-08-17 11:39:52

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号