...
首页> 外文期刊>SIAM Journal on Scientific Computing >SPECTRAL AND DISCONTINUOUS SPECTRAL ELEMENT METHODS FOR FRACTIONAL DELAY EQUATIONS
【24h】

SPECTRAL AND DISCONTINUOUS SPECTRAL ELEMENT METHODS FOR FRACTIONAL DELAY EQUATIONS

机译:分数阶延迟方程的谱和间断谱元方法

获取原文
获取原文并翻译 | 示例

摘要

We first develop a spectrally accurate Petrov-Galerkin spectral method for fractional delay differential equations (FDDEs). This scheme is developed based on a new spectral theory for fractional Sturm-Liouville problems (FSLPs), which has been recently presented in [M. Zayernouri and G. E. Karniadakis, J. Comput. Phys., 252 (2013), pp. 495-517]. Specifically, we obtain solutions to FDDEs in terms of new nonpolynomial basis functions, called Jacobi polyfractonomials, which are the eigenfunctions of the FSLP of the first kind (FSLP-I). Correspondingly, we employ another space of test functions as the span of polyfractonomial eigenfunctions of the FSLP of the second kind (FSLP-II). We prove the wellposedness of the problem and carry out the corresponding stability and error analysis of the PG spectral method. In contrast to standard (nondelay) fractional differential equations, the delay character of FDDEs might induce solutions, which are either nonsmooth or piecewise smooth. In order to effectively treat such cases, we first develop a discontinuous spectral method (DSM) of Petrov-Galerkin type for FDDEs, where the basis functions do not satisfy the initial conditions. Consequently, we extend the DSM scheme to a discontinuous spectral element method (DSEM) for possible adaptive refinement and long time-integration. In DSM and DSEM schemes, we employ the asymptotic eigensolutions to FSLP-I and FSLP-II, which are of Jacobi polynomial form, both as basis and test functions. Our numerical tests demonstrate spectral convergence for a wide range of FDDE model problems with different benchmark solutions.
机译:我们首先为分数延迟微分方程(FDDE)开发了一种光谱精确的Petrov-Galerkin光谱方法。该方案是基于针对分数Sturm-Liouville问题(FSLP)的新频谱理论开发的,最近已在[M. Zayernouri和G.E. Karniadakis,J.Comput。 Phys。,252(2013),第495-517页]。具体来说,我们使用称为Jacobi多项式的新非多项式基函数来获得FDDE的解,这些函数是第一类FSLP(FSLP-1)的本征函数。相应地,我们采用另一种测试函数空间作为第二种FSLP(FSLP-II)的多分数线特征函数的范围。我们证明了问题的适定性,并对PG谱方法进行了相应的稳定性和误差分析。与标准(无延迟)分数阶微分方程相反,FDDE的延迟特性可能会引起非光滑或分段光滑的解。为了有效地处理这种情况,我们首先开发了基本函数不满足初始条件的Petrov-Galerkin类型的不连续光谱方法(DSM)。因此,我们将DSM方案扩展到不连续谱元素方法(DSEM),以实现可能的自适应细化和长时间积分。在DSM和DSEM方案中,我们将Jacobi多项式形式的FSLP-I和FSLP-II的渐近本征解用作基础函数和检验函数。我们的数值测试表明,采用不同基准解决方案可解决多种FDDE模型问题的频谱收敛性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号