...
首页> 外文期刊>SIAM Journal on Scientific Computing >Numerical mathematics of the subtraction method for the modeling of a current dipole in EEG source reconstruction using finite element head models
【24h】

Numerical mathematics of the subtraction method for the modeling of a current dipole in EEG source reconstruction using finite element head models

机译:用有限元头模型对脑电信号源重建中的电流偶极建模的减法方法的数值数学

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In electroencephalography (EEG) source analysis, a dipole is widely used as the model of the current source. The dipole introduces a singularity on the right-hand side of the governing Poisson-type differential equation that has to be treated specifically when solving the equation toward the electric potential. In this paper, we give a proof for existence and uniqueness of the weak solution in the function space of zero-mean potential functions, using a subtraction approach. The method divides the total potential into a singularity and a correction potential. The singularity potential is due to a dipole in an infinite region of homogeneous conductivity. We then state convergence properties of the finite element (FE) method for the numerical solution to the correction potential. We validate our approach using tetrahedra and regular and geometry-conforming node-shifted hexahedra elements in an isotropic three-layer sphere model and a model with anisotropic middle compartment. Validation is carried out using sophisticated visualization techniques, correlation coefficient (CC), and magnification factor (MAG) for a comparison of the numerical results with analytical series expansion formulas at the surface and within the volume conductor for the subtraction approach, with regard to the accuracy in the anisotropic three-layer sphere model (CC of 0.998 or better and MAG of 4.3% or better over the whole range of realistic eccentricities) and to the computational complexity, 2mm node-shifted hexahedra achieve the best results. A relative FE solver accuracy of 10(-4) is sufficient for the used algebraic multigrid preconditioned conjugate gradient approach. Finally, we visualize the computed potentials of the subtraction method in realistically shaped FE head volume conductor models with anisotropic skull compartments.
机译:在脑电图(EEG)源分析中,偶极子被广泛用作电流源的模型。偶极子在控制的泊松型微分方程的右侧引入了一个奇点,当求解该方程朝向电势时,必须对其进行特殊处理。在本文中,我们通过减法给出了零均值势函数的函数空间中弱解的存在性和唯一性的证明。该方法将总电势分为奇异电势和校正电势。奇异电位是由于在均匀电导率的无限区域中的偶极子引起的。然后,我们针对校正电位的数值解陈述了有限元(FE)方法的收敛性质。我们在各向同性三层球体模型和具有各向异性中间隔室的模型中使用四面体以及规则且符合几何形状的节点移动六面体元素验证了我们的方法。验证是使用复杂的可视化技术,相关系数(CC)和放大系数(MAG)进行的,以便将数值结果与表面方法和体积导体内部的解析级数展开公式进行比较,以进行减法。各向异性三层球模型的精度(在整个实际偏心率范围内,CC为0.998或更高,MAG为4.3%或更高),并且在计算复杂度方面,2mm节点位移六面体取得了最佳结果。相对的有限元求解器精度为10(-4),足以用于所使用的代数多重网格预处理共轭梯度方法。最后,我们在具有各向异性头骨隔室的逼真的有限元头体积导体模型中可视化了减法方法的计算电位。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号