首页> 外文期刊>NeuroImage >Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using high-resolution finite element modeling.
【24h】

Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using high-resolution finite element modeling.

机译:组织电导率各向异性对现实的头部模型中EEG / MEG场和返回电流计算的影响:使用高分辨率有限元建模的仿真和可视化研究。

获取原文
获取原文并翻译 | 示例
       

摘要

To achieve a deeper understanding of the brain, scientists, and clinicians use electroencephalography (EEG) and magnetoencephalography (MEG) inverse methods to reconstruct sources in the cortical sheet of the human brain. The influence of structural and electrical anisotropy in both the skull and the white matter on the EEG and MEG source reconstruction is not well understood. In this paper, we report on a study of the sensitivity to tissue anisotropy of the EEG/MEG forward problem for deep and superficial neocortical sources with differing orientation components in an anatomically accurate model of the human head. The goal of the study was to gain insight into the effect of anisotropy of skull and white matter conductivity through the visualization of field distributions, isopotential surfaces, and return current flow and through statistical error measures. One implicit premise of the study is that factors that affect the accuracy of the forward solution will have at least as strong an influence over solutions to the associated inverse problem. Major findings of the study include (1) anisotropic white matter conductivity causes return currents to flow in directions parallel to the white matter fiber tracts; (2) skull anisotropy has a smearing effect on the forward potential computation; and (3) the deeper a source lies and the more it is surrounded by anisotropic tissue, the larger the influence of this anisotropy on the resulting electric and magnetic fields. Therefore, for the EEG, the presence of tissue anisotropy both for the skull and white matter compartment substantially compromises the forward potential computation and as a consequence, the inverse source reconstruction. In contrast, for the MEG, only the anisotropy of the white matter compartment has a significant effect. Finally, return currents with high amplitudes were found in the highly conducting cerebrospinal fluid compartment, underscoring the need for accurate modeling of this space.
机译:为了更深入地了解大脑,科学家和临床医生使用脑电图(EEG)和磁脑电图(MEG)逆方法来重建人脑皮层中的来源。头骨和白质中的结构和电各向异性对EEG和MEG源重建的影响尚不十分清楚。在本文中,我们报道了在人的头部解剖模型中对具有不同方向成分的深层和浅层新皮层脑源性脑电图/ MEG正向问题对组织各向异性的敏感性的研究。该研究的目的是通过可视化场分布,等势面和返回电流以及通过统计误差度量来深入了解头骨和白质电导率各向异性的影响。该研究的一个隐含前提是,影响正解精度的因素对相关逆问题的解至少具有同样强大的影响。该研究的主要发现包括:(1)各向异性的白质电导率导致返回电流沿平行于白质纤维束的方向流动; (2)头骨各向异性对正向电势计算有拖尾作用; (3)一个源越深,它被各向异性组织包围的越多,这种各向异性对所产生的电场和磁场的影响就越大。因此,对于脑电图,颅骨和白质区室的组织各向异性的存在实质上损害了正向电势的计算,并因此损害了反向源的重建。相反,对于MEG,仅白质隔室的各向异性具有显着影响。最后,在高传导性脑脊液隔室中发现了具有高振幅的返回电流,从而强调了对该空间进行精确建模的需要。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号