...
首页> 外文期刊>SIAM Journal on Scientific Computing >BRIDGING SCALES: A THREE-DIMENSIONAL ELECTROMECHANICAL FINITE ELEMENT MODEL OF SKELETAL MUSCLE
【24h】

BRIDGING SCALES: A THREE-DIMENSIONAL ELECTROMECHANICAL FINITE ELEMENT MODEL OF SKELETAL MUSCLE

机译:桥接标度:骨骼肌的三维机电有限元模型

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces a framework for skeletal muscles that couples outputs from a detailed biophysically based electrophysiological cell model to a three-dimensional continuum-based finite element model of muscle mechanics. Due to the unique manner in which a skeletal muscle is activated, specifically the fact that neighboring fibers are electrically isolated and can act independently of each other, a completely new and novel coupling framework has been created. Within this framework, the electrical activity within a fiber is modeled with a biophysically based cell model, which is itself an amalgamation of several existing cell models. From this amalgamated cell model, specific output parameters that describe the level of crossbridge activity are computed and stored within a lookup table. This lookup table is then used to map the appropriate level of activity to all fibers within the muscle. To link the level of activity to a three-dimensional finite flement model of a skeletal muscle, which is based on principles of continuum mechanics, an upscaling method is introduced to compensate for the fact that the finite element mesh does not attempt to separately represent each individual fiber. This upscaling method allows the stress equilibrium equations to be computed at each Gauss point based on different values of the cell model outputs in all the neighboring cells. Since adjacent fibers can operate independently, the cell model outputs used in the finite element solution of the finite elasticity equations are discontinuous. The behavior and performance of the entire coupling framework is carefully analyzed in some simple test cases analyzing the reduction of the discretization error with respect to a sequence of uniformly refined meshes and different activation patterns. The results show that the error-reduction factors obtained from the electromechanical framework using triquadratic Lagrange and tricubic Hermite basis functions in solving the Galerkin finite element stress equilibrium equations are very similar to those obtained from a mechanics-only continuum-based model. Following this, an example of this process applied to the lateral pterygoid muscle is presented. The proposed framework can be used, for example, to investigate the mechanical effects with respect to cellular changes or to analyze the effects of different neuromuscular activation patterns on the tissue response.
机译:本文介绍了骨骼肌的框架,该框架将详细的基于生物物理的电生理细胞模型的输出耦合到基于三维连续体的肌肉力学有限元模型。由于骨骼肌被激活的独特方式,特别是相邻纤维被电隔离并且可以彼此独立起作用的事实,已经创建了一个全新的,新颖的耦合框架。在此框架内,使用基于生物物理的细胞模型对纤维内的电活动进行建模,该细胞模型本身就是几种现有细胞模型的合并。从这个合并的细胞模型中,描述横桥活动水平的特定输出参数被计算并存储在查找表中。然后使用该查找表将适当的活动级别映射到肌肉内的所有纤维。为了将活动水平链接到基于连续力学原理的骨骼肌三维有限元模型,引入了一种放大方法,以补偿有限元网格不试图分别表示每个模型的事实。单个纤维。这种放大方法允许基于所有相邻像元中像元模型输出的不同值,在每个高斯点计算应力平衡方程。由于相邻的纤维可以独立运行,因此在有限弹性方程的有限元解中使用的单元模型输出是不连续的。在一些简单的测试案例中,仔细分析了整个耦合框架的行为和性能,分析了相对于一系列均匀精化的网格和不同激活模式的离散化误差的减少。结果表明,在求解Galerkin有限元应力平衡方程时,使用三重Lagrange和三立方Hermite基函数从机电框架中获得的误差减小因子与仅基于力学连续体模型获得的误差减小因子非常相似。在此之后,给出了应用于翼状lateral肉外侧肌的这一过程的示例。所提出的框架可用于,例如,研究有关细胞变化的机械作用或分析不同神经肌肉激活模式对组织反应的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号