...
首页> 外文期刊>SIAM Journal on Numerical Analysis >AN AUGMENTED MIXED FINITE ELEMENT METHOD FOR THE NAVIER-STOKES EQUATIONS WITH VARIABLE VISCOSITY
【24h】

AN AUGMENTED MIXED FINITE ELEMENT METHOD FOR THE NAVIER-STOKES EQUATIONS WITH VARIABLE VISCOSITY

机译:变黏度Navier-Stokes方程的一种增强混合有限元方法

获取原文
获取原文并翻译 | 示例

摘要

A new mixed variational formulation for the Navier-Stokes equations with constant density and variable viscosity depending nonlinearly on the gradient of velocity, is proposed and analyzed here. Our approach employs a technique previously applied to the stationary Boussinesq problem and to the Navier-Stokes equations with constant viscosity, which consists firstly of the introduction of a modified pseudostress tensor involving the diffusive and convective terms, and the pressure. Next, by using an equivalent statement suggested by the incompressibility condition, the pressure is eliminated, and in order to handle the nonlinear viscosity, the gradient of velocity is incorporated as an auxiliary unknown. Furthermore, since the convective term forces the velocity to live in a smaller space than usual, we overcome this difficulty by augmenting the variational formulation with suitable Galerkin-type terms arising from the constitutive and equilibrium equations, the aforementioned relation defining the additional unknown, and the Dirichlet boundary condition. The resulting augmented scheme is then written equivalently as a fixed point equation, and hence the well-known Schauder and Banach theorems, combined with classical results on bijective monotone operators, are applied to prove the unique solvability of the continuous and discrete systems. No discrete inf-sup conditions are required for the well-posedness of the Galerkin scheme, and hence arbitrary finite element subspaces of the respective continuous spaces can be utilized. In particular, given an integer k >= 0, piecewise polynomials of degree <= k for the gradient of velocity, Raviart-Thomas spaces of order k for the pseudostress, and continuous piecewise polynomials of degree <= k+1 for the velocity, constitute feasible choices. Finally, optimal a priori error estimates are derived, and several numerical results illustrating the good performance of the augmented mixed finite element method and confirming the theoretical rates of convergence are reported.
机译:提出并分析了一种非线性变化的Navier-Stokes方程的混合变分公式,该方程具有恒定的密度和可变的粘度,非线性地取决于速度的梯度。我们的方法采用了先前应用于固定的Boussinesq问题和具有恒定粘度的Navier-Stokes方程的技术,该技术首先包括引入涉及扩散和对流项的修正伪应力张量以及压力。接下来,通过使用不可压缩条件建议的等效陈述,消除压力,并且为了处理非线性粘度,将速度梯度作为辅助未知数合并。此外,由于对流项迫使速度生活在比平常小的空间中,因此我们通过用由本构和平衡方程产生的合适的Galerkin型项增加变分公式,克服了这一困难,上述关系定义了另外的未知数,并且Dirichlet边界条件。然后将所得的扩充方案等效地写为一个不动点方程,因此,将著名的Schauder和Banach定理与双射单调算子的经典结果结合起来,证明连续和离散系统的独特可解性。对于Galerkin方案的适定性,不需要离散的inf-sup条件,因此可以利用各个连续空间的任意有限元子空间。特别是,给定整数k> = 0,速度梯度的分段分段多项式<= k,伪应力的阶次为Raviart-Thomas空间,伪速度为阶次分段连续多项式<= k + 1,对于速度,构成可行的选择。最后,得出最佳的先验误差估计,并报告了一些数值结果,这些结果说明了增强混合有限元方法的良好性能,并证实了理论收敛速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号