...
首页> 外文期刊>SIAM Journal on Numerical Analysis >RAPID SOLUTION OF THE WAVE EQUATION IN UNBOUNDED DOMAINS
【24h】

RAPID SOLUTION OF THE WAVE EQUATION IN UNBOUNDED DOMAINS

机译:无界域中波方程的快速解

获取原文
获取原文并翻译 | 示例

摘要

In this paper we propose and analyze a new, fast method for the numerical solution of time domain boundary integral formulations of the wave equation. We employ Lubich’s convolution quadrature method for the time discretization and a Galerkin boundary element method for the spatial discretization. The coefficient matrix of the arising system of linear equations is a triangular block Toeplitz matrix. Possible choices for solving the linear system arising from the above discretization include the use of fast Fourier transform (FFT) techniques and the use of data-sparse approximations. By using FFT techniques, the computational complexity can be reduced substantially while the storage cost remains unchanged and is, typically, high. Using data-sparse approximations, the gain is reversed; i.e., the computational cost is (approximately) unchanged while the storage cost is substantially reduced. The method proposed in this paper combines the advantages of these two approaches. First, the discrete convolution (related to the block Toeplitz system) is transformed into the (discrete) Fourier image, thereby arriving at a decoupled system of discretized Helmholtz equations with complex wave numbers. A fast data-sparse (e.g., fast multipole or panel-clustering) method can then be applied to the transformed system. Additionally, significant savings can be achieved if the boundary data are smooth and time-limited. In this case the right-hand sides of many of the Helmholtz problems are almost zero, and hence can be disregarded. Finally, the proposed method is inherently parallel. We analyze the stability and convergence of these methods, thereby deriving the choice of parameters that preserves the convergence rates of the unperturbed convolution quadrature. We also present numerical results which illustrate the predicted convergence behavior.
机译:本文提出并分析了波动方程时域边界积分公式数值解的一种新的快速方法。我们采用Lubich的卷积正交方法进行时间离散化,并采用Galerkin边界元方法进行空间离散化。线性方程组的出现系统的系数矩阵是三角形块Toeplitz矩阵。解决由上述离散化引起的线性系统的可能选择包括使用快速傅立叶变换(FFT)技术和使用数据稀疏近似。通过使用FFT技术,可以大大降低计算复杂性,同时存储成本保持不变,并且通常很高。使用数据稀疏近似,增益被反转。即,计算成本(大约)不变,而存储成本却大大降低。本文提出的方法结合了这两种方法的优点。首先,将离散卷积(与块Toeplitz系统有关)转换为(离散)傅立叶图像,从而得到具有复波数的离散亥姆霍兹方程的解耦系统。然后可以将快速数据稀疏(例如,快速多极或面板聚类)方法应用于变换后的系统。此外,如果边界数据是平滑且有时间限制的,则可以节省大量资金。在这种情况下,许多亥姆霍兹问题的右侧几乎为零,因此可以忽略。最后,提出的方法本质上是并行的。我们分析了这些方法的稳定性和收敛性,从而推导了保留无扰动卷积正交率收敛速度的参数选择。我们还提出了数值结果,说明了预测的收敛行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号