首页> 外文学位 >Numerical solution of the Helmholtz and the wave equations in unbounded domains.
【24h】

Numerical solution of the Helmholtz and the wave equations in unbounded domains.

机译:无限范围内亥姆霍兹方程和波动方程的数值解。

获取原文
获取原文并翻译 | 示例

摘要

Important areas of application in applied mathematics and engineering such as acoustic or electromagnetic scattering require a boundary condition at infinity in order to guarantee a unique and well-posed solution. To solve a boundary value problem numerically in an unbounded domain, we limit the computational domain to a finite region by introducing an artificial boundary. This requires a boundary condition on the artificial boundary such that the solution of the problem in the bounded region coincides with the solution of the original unbounded problem.; In this work, we present the numerical solution of the two dimensional time-harmonic wave (Helmholtz) equation and the time-dependent wave equation in two and three space dimensions where the domain is unbounded.; In the time-harmonic problem, we consider as an example the scattered wave problem when plane waves bombard a circular cylinder where the artificial boundary is a circle surrounding the cylinder. We examine the performance of Sommerfeld, Bayliss, and nonreflecting boundary conditions. First, on the artificial boundary, we compare the normal derivative approximated with these conditions to the exact normal derivative. Second, we calculate the numerical solution of Helmholtz problem with the second and the fourth order finite difference method. The accuracy and the rate of convergence of the numerical procedure are estimated. Another example using a point source for the Helmholtz problem, is tested and the sensitivity of the solution to the radius of the artificial boundary is discussed.; In the time-dependent problem, new exact nonreflecting boundary conditions are obtained for the two and the three dimensional wave equation and three techniques are used to derive the approximate nonreflecting conditions. The accuracy and convergence properties of these boundary conditions are tested using the normal derivative approximation and the explicit finite difference method combined with the boundary condition to calculate the numerical solution. The numerical examples show that our boundary conditions are very accurate and remain stable for a long time.
机译:在应用数学和工程学中的重要应用领域,例如声或电磁散射,需要无穷大的边界条件,以保证唯一且位置合理的解决方案。为了在无界域中数值地解决边界值问题,我们通过引入人工边界将计算域限制为有限区域。这要求在人工边界上有一个边界条件,以使有界区域中问题的解决方案与原始无界问题的解决方案一致。在这项工作中,我们给出了二维无时域的二维时谐波(Helmholtz)方程和时变波方程的数值解。在时谐问题中,我们以平面波轰击圆柱体时的散射波问题为例,其中人造边界是围绕圆柱体的圆。我们检查了Sommerfeld,Bayliss和非反射边界条件的性能。首先,在人工边界上,我们将在这些条件下近似的正态导数与精确的正态导数进行比较。其次,我们用二阶和四阶有限差分法计算亥姆霍兹问题的数值解。估计了数值过程的准确性和收敛速度。测试了另一个使用点源解决亥姆霍兹问题的示例,并讨论了该解决方案对人工边界半径的敏感性。在与时间有关的问题中,针对二维和三维波动方程获得了新的精确非反射边界条件,并使用了三种技术来推导近似的非反射条件。使用正态导数近似和显式有限差分方法结合边界条件来测试这些边界条件的准确性和收敛性,以计算数值解。数值算例表明,我们的边界条件非常准确,并且可以长期保持稳定。

著录项

  • 作者

    Aladl, Usaf E.;

  • 作者单位

    The University of Western Ontario (Canada).;

  • 授予单位 The University of Western Ontario (Canada).;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 102 p.
  • 总页数 102
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 数学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号