...
首页> 外文期刊>SIAM Journal on Matrix Analysis and Applications >SOLVING A STRUCTURED QUADRATIC EIGENVALUE PROBLEM BY A STRUCTURE-PRESERVING DOUBLING ALGORITHM
【24h】

SOLVING A STRUCTURED QUADRATIC EIGENVALUE PROBLEM BY A STRUCTURE-PRESERVING DOUBLING ALGORITHM

机译:通过保留结构的双精度算法来解决结构化的二次特征值问题

获取原文
获取原文并翻译 | 示例
           

摘要

In studying the vibration of fast trains, we encounter a palindromic quadratic eigen-value problem (QEP) (lambda(2)A(T)+lambda Q+A)z = 0, where A, Q is an element of C-nxn and Q(T) = Q. Moreover, the matrix Q is block tridiagonal and block Toeplitz, and the matrix A has only one nonzero block in the upper-right corner. So most of the eigenvalues of the QEP are zero or infinity. In a linearization approach, one typically starts with deflating these known eigenvalues for the sake of efficiency. However, this initial deflation process involves the inverses of two potentially ill-conditioned matrices. As a result, large error might be introduced into the data for the reduced problem. In this paper we propose using the solvent approach directly on the original QEP, without any deflation process. We apply a structure-preserving doubling algorithm to compute the stabilizing solution of the matrix equation X + A(T)X(-1)A = Q, whose existence is guaranteed by a result on the Wiener-Hopf factorization of rational matrix functions associated with semi-infinite block Toeplitz matrices and a generalization of Bendixson's theorem to bounded linear operators on Hilbert spaces. The doubling algorithm is shown to be well defined and quadratically convergent. The complexity of the doubling algorithm is drastically reduced by using the Sherman-Morrison-Woodbury formula and the special structures of the problem. Once the stabilizing solution is obtained, all nonzero finite eigenvalues of the QEP can be found efficiently and with the automatic reciprocal relationship, while the known eigenvalues at zero or infinity remain intact.
机译:在研究快速列车的振动时,我们遇到了回文二次特征值问题(QEP)(lambda(2)A(T)+ lambda Q + A)z = 0,其中A,Q是C-nxn的元素此外,矩阵Q是块三对角线和块Toeplitz,矩阵A在右上角只有一个非零块。因此,QEP的大多数特征值均为零或无穷大。在线性化方法中,为了效率起见,通常从缩小这些已知特征值开始。但是,此初始放气过程涉及两个潜在病态矩阵的逆过程。结果,对于减少的问题,可能将大的误差引入数据中。在本文中,我们建议直接在原始QEP上使用溶剂方法,而无需任何放气过程。我们应用保留结构的加倍算法来计算矩阵方程X + A(T)X(-1)A = Q的稳定解,该矩阵解的存在由相关矩阵函数的Wiener-Hopf因式分解的结果保证半无限块Toeplitz矩阵和Bendixson定理到Hilbert空间上有界线性算子的推广。事实证明,加倍算法定义明确,并且二次收敛。通过使用Sherman-Morrison-Woodbury公式和问题的特殊结构,可以大大降低加倍算法的复杂性。一旦获得稳定解,就可以有效地并以自动倒数关系找到QEP的所有非零有限特征值,而零或无穷大的已知特征值则保持不变。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号