...
首页> 外文期刊>Sensors and Actuators, A. Physical >Prediction of the performance of a Si-micromachined microthruster by computing the subsonic gas flow inside the thruster
【24h】

Prediction of the performance of a Si-micromachined microthruster by computing the subsonic gas flow inside the thruster

机译:通过计算推进器内部的亚音速气流预测硅微机械微型推力器的性能

获取原文
获取原文并翻译 | 示例
           

摘要

MEMS-based microthrusters are now introduced and fabricated to meet micropropulsion requirements especially for the attitude control of the nanosatellites. The key to the development of these microsystems lies in the generation of extremely accurate thrust level. This is made possible by modelling tools capable of predicting the processes inside the thruster during the subsonic combustion and of computing the theoretical performance of the systems. In this paper, we present a new model based on the computation of the unsteady gas flow inside the microthruster. The results show the evolution of the gas pressure, velocity and gas volume at each section of the thruster and at each step in the propulsion process. The final aim of this study is to obtain a model package capable of predicting the level of the exhaust thrust of any subsonic microthruster for any given geometrical features. For a glycidyle azide polymer (GAP)-based microthruster, the calculations yield the best subsonic micronozzle design: the divergent length ranges from three to seven times the throat radius for a divergence angle of 12 degrees. The chamber-to-throat section ratio must be comprised between 5 and 10. Modelling results also show that, for a 4-mm combustion diameter thruster, the thrust force ranges from 2.5 to 75 mN, depending on geometrical characteristics. (C) 2000 Elsevier Science B.V. All rights reserved. [References: 9]
机译:现在引入并制造了基于MEMS的微推力器,以满足微推进的要求,尤其是对于纳米卫星的姿态控制。这些微系统发展的关键在于产生极其精确的推力水平。通过建模工具可以做到这一点,这些工具能够预测亚音速燃烧过程中推进器内部的过程,并能够计算系统的理论性能。在本文中,我们基于微推力器内部非恒定气流的计算提出了一个新模型。结果显示推进器每个部分以及推进过程中每个步骤的气压,速度和气体量的变化。这项研究的最终目的是获得一个模型套件,该套件能够针对任何给定的几何特征预测任何亚音速微型推进器的排气推力水平。对于基于缩水甘油叠氮化物聚合物(GAP)的微型推力器,计算得出最佳的亚音速微喷嘴设计:发散长度为喉部半径的3到7倍,发散角为12度。腔室与喉部的截面比必须在5到10之间。建模结果还显示,对于4毫米燃烧直径推进器,推力的范围为2.5到75 mN,具体取决于几何特性。 (C)2000 Elsevier Science B.V.保留所有权利。 [参考:9]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号