...
首页> 外文期刊>Sensors and Actuators, A. Physical >Temperature dependent current-transport mechanism in Au/(Zn-doped)PVA- GaAs Schottky barrier diodes (SBDs)
【24h】

Temperature dependent current-transport mechanism in Au/(Zn-doped)PVA- GaAs Schottky barrier diodes (SBDs)

机译:Au /(Zn掺杂)PVA / n-GaAs肖特基势垒二极管(SBD)中与温度有关的电流传输机制

获取原文
获取原文并翻译 | 示例

摘要

In order to obtain detailed information about the current-transport mechanisms (CTMs) in the Au/(Zn-doped) PVA-GaAs SBDs, the forward and reverse bias current-voltage (I-V) characteristics were investigated in the temperature range of 80-350 K by the steps of 30 K. The ideality factor (n) decreases from 12.850 to 2.805, while the zero-bias barrier height (Φ_(Bo)) increases from 0.145 eV to 0.606 eV with increasing temperature from 80 K to 350 K. While the n decreases, Φ_(Bo) increases with increasing temperature. Such positive temperature coefficient (α) of Φ_(Bo) is not in agreement with the negative temperature coefficient of band gap GaAs or barrier height (BH) of ideal diode. On the other hand, the value of modified barrier height (=nΦ_(Bo)) decreases almost linearly with the increasing temperature as Φ_B(T) = (1.909-5.852 × 10~(-4)T) eV. It is clear that this value of the BH is in good agreement with the negative temperature coefficient of band gap of GaAs (-5.4 × 10~(-4) eV K~(-1)). In addition, the semi-logarithmic ln I-V plots at low bias voltages are almost parallel for each temperature. As a result of that, its inverse slope (E_o = nkT/q = 87 meV) remained almost constant, indicating it is independent of temperature. Such behavior of BH can be explained by the field emission (FE) theory especially at low temperatures rather than thermionic emission (TE) and thermionic field emission (TFE) theories. Therefore, the non-ideal behavior of the forward-bias I-V characteristics in Au/(Zn-doped)-PVA-GaAs SBD was successfully explained in terms of the TE mechanism with a double GD of BHs.
机译:为了获得有关Au /(Zn掺杂)PVA / n-GaAs SBD中电流传输机制(CTM)的详细信息,研究了在温度范围内的正向和反向偏置电流-电压(IV)特性。 80-350 K,以30 K为步长。随着温度从80 K增加到0,理想系数(n)从12.850降低到2.805,而零偏置势垒高度(Φ_(Bo))从0.145 eV增加到0.606 eV。 350K。当n减小时,Φ_(Bo)随着温度升高而增加。 Φ_(Bo)的这种正温度系数(α)与带隙GaAs的负温度系数或理想二极管的势垒高度(BH)不一致。另一方面,随着Φ_B(T)=(1.909-5.852×10〜(-4)T)eV,修正势垒高度(=nΦ_(Bo))的值几乎随温度升高而线性减小。显然,BH的值与GaAs的带隙负温度系数(-5.4×10〜(-4)eV K〜(-1))吻合良好。另外,对于每个温度,低偏置电压下的半对数ln I-V图几乎平行。结果,它的反斜率(E_o = nkT / q = 87 meV)几乎保持恒定,表明它与温度无关。 BH的这种行为可以用场发射(FE)理论来解释,尤其是在低温下,而不是用热电子发射(TE)和热电子场发射(TFE)理论来解释。因此,成功地解释了Au /(Zn掺杂)-PVA / n-GaAs SBD中正向偏压I-V特性的非理想行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号