...
首页> 外文期刊>Scripta materialia >Comments on the interpretation of differential scanning calorimetry results for thermoelastic martensitic transformations: Athermal versus thermally activated kinetics
【24h】

Comments on the interpretation of differential scanning calorimetry results for thermoelastic martensitic transformations: Athermal versus thermally activated kinetics

机译:关于热弹性马氏体转变的差示扫描量热法结果的解释的评论:无热与热活化动力学

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In the previous article (1) Van Humbeeck and Planes have made a number of criticisms of our recent paper (2) conceming.the interpretation of the results obtained by Differential Scanning Calorimetry (DSC) from the Martensjfie Transformation of Cu-Al-Ni-Mn-B alloys. Although the martensitic transformation df these shape memory alloys is generally classified as athermal, it has beencbnfirmed that the capacity of the alloys to Undergo a more Complete thermoelastic transformation (i.e. better reversibility of the transformation)' increased with the Mn content (2, 3). This behaviour has been explained byihterpreting the DSG results-obtained during thermal cycling in terms of a thermally activated mechanism controlling the direct andbfceverso transformations (2). In particular, the DSC curves characteristic of heat absorption orreleascduring the reverse or direct transformation were not identical when the heating/cooling rates varied (as shown in figure 2 of (2)). When the healing rate increases during the reverse transformation the DSC curves.shift towards higher temperatures while they shift towards the lower temperatures when the cooling rate was increased during the direct transformation. Since the starting transformation temperatures (As, Ms) donotshifti Van Humbeeck and Planes (I) state that there is no real peak shift and assume that our DCS experiments werecarried out without taking into account the thermal lag effect between sample and cell. On tha following line theydeduce a time constant, t, of 60 seconds because the peak maximum shifts. In factlhe assumption made by Van Humbeeck and Planes is false. Gur experiments were carried out aftencbntrollJiig that the instrumental shift was neglignble by melting indium at different heating rates" varying between l-SQ'C/min, The melting point of indium is 156.4°C, which is within the range of transformation temperatures of our Ml 5 alloy (sec figure 2 in (2)). Thus, the values of the time constant measured, fofthe&ting rates between 10-30°C/min. vary between 6.2 and 6.8 seconds. The shift of the peak dueto iajstrutnentartimo'lag deduced from the expression AT = x(dT/dt) varied between 0.3-1 °C for the heating ra{e
机译:在上一篇文章(1)中Van Vanbebeeck和Planes对我们最近的论文(2)提出了许多批评。对Cu-Al-Ni- Mn-B合金。尽管这些形状记忆合金的马氏体相变一般被归类为无热,但已经证实,随着锰含量的增加,合金进行更完全的热弹性相变的能力(即相变的可逆性更好)'(2,3) 。这种行为已通过解释热循环过程中获得的DSG结果进行了解释,其中DSG结果是通过控制直接转化和热转化的热激活机制来进行的(2)。特别地,当加热/冷却速率变化时,吸热或释放反向或直接转变的特征的DSC曲线不相同(如图(2)的图2所示)。当在逆向转化过程中治愈率提高时,DSC曲线向较高温度移动,而在直接转化过程中提高冷却速率时,DSC向较低温度移动。由于起始转变温度(As,Ms)不会偏移Van Humbeeck和Planes(I)表示没有实际的峰偏移,因此假设我们进行的DCS实验未考虑样品与细胞之间的热滞后效应。在下一行中,由于峰值最大偏移,它们得出60秒的时间常数t。实际上,范·洪贝克和普莱恩斯所做的假设是错误的。吉格(​​Gig)实验进行后,吉格(Jigig)认为,通过以不同的加热速率熔化铟,仪器的移动可以忽略不计,升速率在l-SQ'C / min之间变化。铟的熔点为156.4°C,处于我们转变温度的范围内Ml 5合金((2)中的图2),因此,测量的时间常数值在10-30°C / min之间的变化速率在6.2至6.8秒之间变化。从表达式AT = x(dT / dt)推导出,对于加热系数r {e

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号