首页> 外文期刊>SAE International Journal of Engines >Simulation and Analysis of In-Cylinder Soot Formation in a Low Temperature Combustion Diesel Engine Using a Detailed Reaction Mechanism
【24h】

Simulation and Analysis of In-Cylinder Soot Formation in a Low Temperature Combustion Diesel Engine Using a Detailed Reaction Mechanism

机译:利用详细反应机理模拟和分析低温燃烧柴油机缸内碳黑的形成

获取原文
获取原文并翻译 | 示例
           

摘要

3-D Computational Fluid Dynamics (CFD) simulations have been performed using a detailed reaction mechanism to capture the combustion and emissions behavior of an IFP Energies Nouvelles optical diesel engine. Simulation results for in-cylinder soot volume fraction (SVF) have been compared to experimental data reported by Pires da Cruz et al. [1] for the engine operating in low-temperature combustion (LTC) mode with high EGR, and for varied operating conditions. For the simulations, a 4-component surrogate blend containing n-hexadecane, heptamethylnonane, 1-methylnaphthalene, and decalin was used to represents the chemical and physical properties of the standard European diesel used in the engine tests. A validated detailed surrogate mechanism containing 392 species and 2579 reactions was employed to model the chemistry of fuel combustion and emissions. In addition, a new pseudo-gas soot model was developed and coupled with the fuel chemistry to simulate in-cylinder soot nucleation, growth, and oxidation processes. A 60° sector mesh containing 53500 cells was used for the engine simulations using the FORTE CFD simulation software. Comparisons of calculated incylinder soot volume fractions to those measured show good agreement for crank-angle-resolved SVF. Soot production nominally begins as soon as the combustion starts around 6 crank angle degrees (CAD) after TDC, and peaks approximately 12 CAD after TDC when soot oxidation begin to dominate. Simulations captured the location of soot in the center of the bowl just above the wall, and trends in SVF with variation in operating parameters, including fuel loading, EGR, injection timing, and intake temperature. Advancing injection timing and increasing fuel loading increases peak soot levels, whereas lower EGR and lower intake temperatures lower peak soot levels. Simulations also capture the trends in other emissions for varied operating conditions. Further analyses have been performed to understand the combustion and emissions processes.
机译:已使用详细的反应机制进行了3-D计算流体动力学(CFD)仿真,以捕获IFP Energies Nouvelles光学柴油发动机的燃烧和排放行为。缸内烟灰体积分数(SVF)的模拟结果已与Pires da Cruz等人报道的实验数据进行了比较。 [1]适用于在具有高EGR的低温燃烧(LTC)模式下运行的发动机以及各种工况。对于模拟,使用包含正十六烷,七甲基壬烷,1-甲基萘和十氢化萘的4组分替代混合物来代表用于发动机测试的标准欧洲柴油的化学和物理特性。经过验证的详细替代机制包含392种和2579个反应,用于模拟燃料燃烧和排放的化学过程。此外,还开发了一种新的伪气体烟灰模型,并将其与燃料化学方法相结合,以模拟缸内烟灰的成核,生长和氧化过程。使用FORTE CFD仿真软件,将包含53500个单元的60°扇形网格用于发动机仿真。计算得出的缸内烟灰体积分数与测得的值的比较表明,曲轴角分辨的SVF具有很好的一致性。燃烧开始于TDC之后大约6曲柄角度(CAD)时,名义上开始产生烟灰;当烟灰开始占主导地位时,TDC之后大约12 CAD达到峰值。模拟捕获了烟灰在刚好位于壁上方的碗中心的位置,以及随操作参数(包括燃料负载,EGR,喷射正时和进气温度)变化而导致的SVF趋势。提前喷射正时和增加燃料负荷会增加烟灰峰值,而较低的EGR和较低的进气温度会降低烟灰峰值。模拟还捕获了不同工况下其他排放的趋势。进行了进一步的分析以了解燃烧和排放过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号