...
首页> 外文期刊>Organometallics >TUNGSTEN-CARBON, CARBON-CARBON, AND CARBON-HYDROGEN BOND ACTIVATIONS IN THE CHEMISTRY OF 1,2-W(2)R(2)(OR')(4) (W-W)COMPLEXES .4. PHOSPHINE-AND AMINE-PROMOTED LIGAND MIGRATIONS AND ALPHA-CH ACTIVATIONS IN THE FORMATION OF ALKYLIDYNEHYDRIDODITUNGSTEN C
【24h】

TUNGSTEN-CARBON, CARBON-CARBON, AND CARBON-HYDROGEN BOND ACTIVATIONS IN THE CHEMISTRY OF 1,2-W(2)R(2)(OR')(4) (W-W)COMPLEXES .4. PHOSPHINE-AND AMINE-PROMOTED LIGAND MIGRATIONS AND ALPHA-CH ACTIVATIONS IN THE FORMATION OF ALKYLIDYNEHYDRIDODITUNGSTEN C

机译:1,2-W(2)R(2)(OR')(4)(W-W)络合物的化学性质中的钨-碳,碳-碳和碳氢键激活.4。膦酸和胺促进的配体迁移和Alpha-CH活化在烷基亚乙基双钨锡C的形成中

获取原文
获取原文并翻译 | 示例
           

摘要

Lewis bases [PMe(3) or quinuclidine (Quin)] and 1,2-W-2(CH(2)Ph)2(O-i-Pr)(4) react in toluene and hexane at room temperature to give benzylidyne hydride compounds, W-2(mu-H)(mu-CPh)(O-i-Pr)(4)L(x), where L = Quin, x = 2, and L = PMe(3), x = 3 and 2, by way of a double alpha-CH activation and elimination of toluene. Similarly, 1,2-W-2(i-Bu)(2)(O-i-Pr)(4) and PMe(3) yields the alkylidyne hydride W-2(mu-H)(mu-C-i-Pr)(O-i-Pr)(4)(PMe(3))(3) and isobutane. By contrast, addition of bisdimethylphosphinomethane (dmpm) yields adducts 1,2-W-2(CH(2)R)(2)(O-i-Pr)(4)(dmpm), where R = Ph and i-Pr, that are relatively inert in solution at room temperature with respect to alpha-CH activation and formation of alkylidyne bridge complexes. The rate of formation of the benzylidyne hydride compounds has been studied in the presence of excess L. The formation of W-2(mu-H)(mu-CPh)(O-i-Pr)(4)(Quin)(2) was approximately half-order in [Quin], while for PMe(3) there was an inverse dependence on [PMe(3)]. These observations are attributed to differences in the relative equilibria involving the reversible uptake of L by 1,2-W-2(CH(2)Ph)(2)(O-i-Pr)(4) to give 1,2-W-2(CH(2)Ph)(2)(O-i-Pr)(4)L(2) by way of a monoligated intermediate 1,2-W-2(CH(2)Ph)(2)(O-i-Pr)(4)L. The kinetic isotope effects, k(HH)/k(DD) Of 5.0(6) at 25 degrees C and 3.4(4) at 22 degrees C were observed for the liberation of toluene and toluene-d(8) for the reactions employing Quin and PMe(3), respectively, and the protio- and perdeuteriobenzyl-containing compounds. A discussion of the likely mechanism of formation of the hydride alkylidyne bridged complexes is presented with emphasis on ligand induced benzyl/alkyl migration across the W equivalent to W bond as reported in a previous paper for the reaction between 1,2-Mo-2(CH(2)Ph)(2)(O-i-Pr)(4) and PMe(3) to give (PMe(3))(PhCH(2))(2)(i-PrO)Mo equivalent to Mo(O-i-Pr)(3) (Chisholm, M. H.; et al. Organometallics 1992, 11, 4029). Support for elimination of toluene from one metal center is seen in the formation of the kinetic product (PMe(3))(3)(i-PrO)W(mu-H)(mu-CPh)W(O-i-Pr)(3) which, by dissociation of PMe(3) and alkoxide migration, yields (PMe(3))(i-PrO)(2)W(mu-H)(mu-CPh)W(O-i-Pr)(2)(PMe(3)). All the new compounds have been characterized by NMR studies, infrared spectroscopy, elemental analyses, and single crystal X-ray crystallography. The mu-alkylidyne hydride complexes contain a central W-2(8+) core With W-W distances typical of a W=W bond, similar to 2.5 Angstrom, while the dmpm adducts contain W equivalent to W bonds of distance similar to 2.3 Angstrom. Crystal data: (i) For W-2(mu-H)(mu-CPh)(O-i-Pr)(4)(PMe(3))(3) at -157 degrees C, a = 23.786(5) Angstrom, b = 10.946(2) , c = 14.153(3) Angstrom, Z = 4, d(caled) = 1.66 g/cm(3) and space group P2(1)2(1)2(1) For W-2(mu-H)(mu-CPh)(O-i-Pr)(4)(PMe(3))(2) at -143 degrees C, a = 11.441(4) Angstrom, b = 13.223(6) Angstrom, c = 21.892(8) A, beta = 94.21(2)degrees, Z = 4, d(caled) = 1.70 g/cm(3), and space group P2(1)/c. For W-2(mu-H)(mu-CHP)(O-i-Pr)(4)(Quin)(2) at -152 degrees C, a = 17.942(6) Angstrom, b = 9.976(3) Angstrom, c = 19.788(8) Angstrom, beta = 94.82(2)degrees, Z = 4, d(caled) = 1.725 g/cm(3), and space group P2(1)/c. (ii) For W-2(mu-H)(mu-C-i-Pr)(O-i-Pr)(4)(PMe(3))(3) at -170 degrees C, a = 19.122(4) Angstrom, b = 20.749(3) Angstrom, c = 19.817(3) Angstrom, beta = 114.45(1)degrees, Z = 8, d(caled) = 1.65 g/cm(3), and space group P2(1)/a. (iii) For W-2(i-Bu)(2)(O-i-Pr)(4)(dmpm) at -168 degrees C, a = 9.855(2) Angstrom, b = 18.832(4) Angstrom, c = 18.176(3) Angstrom, beta = 94.87(1)degrees, Z = 4, d(caled) = 1.69 g/cm(3), and space group P2(1). (iv) For W-2(CH(2)Ph)(2)(O-i-Pr)(4)(dmpm) at -172 degrees C, a = 15.020(2) Angstrom, b = 29.207(4) Angstrom, c = 17.774(2) Angstrom, beta = 111.63(1)degrees, Z = 8, d(caled) = 1.69 g/cm(3), and space group P2(1). [References: 25]
机译:Lewis碱[PMe(3)或奎尼丁(Quin)]和1,2-W-2(CH(2)Ph)2(Oi-Pr)(4)在室温下在甲苯和己烷中反应,得到苄基炔烃氢化物,W-2(mu-H)(mu-CPh)(Oi-Pr)(4)L(x),其中L = Quin,x = 2,L = PMe(3),x = 3和2,通过双α-CH活化和甲苯去除。同样,1,2-W-2(i-Bu)(2)(Oi-Pr)(4)和PMe(3)生成亚烷基氢化物W-2(mu-H)(mu-Ci-Pr)( Oi-Pr)(4)(PMe(3))(3)和异丁烷。相比之下,添加双二甲基膦甲烷(dmpm)产生加合物1,2-W-2(CH(2)R)(2)(Oi-Pr)(4)(dmpm),其中R = Ph和i-Pr,对于室温下的溶液,α-CH活化和亚烷基桥复合物的形成相对惰性。研究了在过量L存在下亚苄基氢化物化合物的形成速率.W-2(mu-H)(mu-CPh)(Oi-Pr)(4)(Quin)(2)的形成为在[Quin]中大约为半阶,而对于PMe(3),则与[PMe(3)]呈负相关。这些观察结果归因于相对平衡的差异,该相对平衡涉及1,2-W-2(CH(2)Ph)(2)(Oi-Pr)(4)对L的可逆吸收,从而得到1,2-W- 2(CH(2)Ph)(2)(Oi-Pr)(4)L(2)通过单连接中间体1,2-W-2(CH(2)Ph)(2)(Oi-Pr )(4)长。观察到动力学同位素效应,在25摄氏度时k(HH)/ k(DD)为5.0(6),在22摄氏度时为3.4(4),对于使用甲苯的反应释放出甲苯和甲苯-d(8)。分别为Quin和PMe(3)以及含巯基和全氘代苄基的化合物。讨论了氢化物亚烷基桥连配合物形成的可能机理,重点讨论了配体诱导的苄基/烷基在W上的等效于W键的W迁移,如先前论文中报道的1,2-Mo-2( CH(2)Ph)(2)(Oi-Pr)(4)和PMe(3)得到(PMe(3))(PhCH(2))(2)(i-PrO)Mo等于Mo(Oi -Pr)(3)(Chisholm,MH; et al.organometallics 1992,11,4029)。在形成动力学产物(PMe(3))(3)(i-PrO)W(mu-H)(mu-CPh)W(Oi-Pr)( 3),通过解离PMe(3)和醇盐迁移,可产生(PMe(3))(i-PrO)(2)W(mu-H)(mu-CPh)W(Oi-Pr)(2) (PMe(3))。所有这些新化合物均已通过NMR研究,红外光谱,元素分析和单晶X射线晶体学进行了表征。 mu-亚烷基氢化物配合物包含一个中心的W-2(8+)核,其W-W距离典型地为W = W键,类似于2.5埃,而dmpm加合物所含的W等效于W键,其距离类似于2.3埃。晶体数据:(i)对于W-2(mu-H)(mu-CPh)(Oi-Pr)(4)(PMe(3))(3)在-157摄氏度下,a = 23.786(5)埃,b = 10.946(2),c = 14.153(3)埃,Z = 4,d(caled)= 1.66 g / cm(3)和空间群P2(1)2(1)2(1)对于W-在-143摄氏度下2(mu-H)(mu-CPh)(Oi-Pr)(4)(PMe(3))(2),a = 11.441(4)埃,b = 13.223(6)埃, c = 21.892(8)A,β= 94.21(2)度,Z = 4,d(换算)= 1.70 g / cm(3),空间组P2(1)/ c。对于在-152摄氏度下的W-2(mu-H)(mu-CHP)(Oi-Pr)(4)(Quin)(2),a = 17.942(6)埃,b = 9.976(3)埃, c = 19.788(8)埃,beta = 94.82(2)度,Z = 4,d(caled)= 1.725 g / cm(3),以及空间组P2(1)/ c。 (ii)对于W-2(mu-H)(mu-Ci-Pr)(Oi-Pr)(4)(PMe(3))(3)在-170摄氏度下,a = 19.122(4)埃, b = 20.749(3)埃,c = 19.817(3)埃,beta = 114.45(1)度,Z = 8,d(caled)= 1.65 g / cm(3),空间组P2(1)/ a 。 (iii)对于W-2(i-Bu)(2)(Oi-Pr)(4)(dmpm)在-168摄氏度下,a = 9.855(2)埃,b = 18.832(4)埃,c = 18.176(3)埃,贝塔= 94.87(1)度,Z = 4,d(换算)= 1.69 g / cm(3),空间群P2(1)/ n。 (iv)对于在-172摄氏度的W-2(CH(2)Ph)(2)(Oi-Pr)(4)(dmpm),a = 15.020(2)埃,b = 29.207(4)埃, c = 17.774(2)埃,beta = 111.63(1)度,Z = 8,d(caled)= 1.69 g / cm(3),空间组P2(1)/ n。 [参考:25]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号