首页> 外文期刊>Organometallics >Participation of (eta(3)-allyl)ruthenium(II) complexes in C-C bond formation and C-C bond cleavage. A theoretical study [Review]
【24h】

Participation of (eta(3)-allyl)ruthenium(II) complexes in C-C bond formation and C-C bond cleavage. A theoretical study [Review]

机译:(eta(3)-烯丙基)钌(II)配合物参与C-C键的形成和C-C键的裂解。理论研究[综述]

获取原文
获取原文并翻译 | 示例
           

摘要

Coupling reactions of formaldehyde with RUBr(eta (3)-C3H5)(CO)(3) (R1), [RU(eta (3)-C3H5)(HCHO)(CO)(3)](+) (I2), and RuBr(eta (3)-C3H5)(HCHO)(CO)(2) (I3) were theoretically investigated with ab initio MP2-MP4(SDQ), CCSD(T), and DFT(B3LYP) methods. In R1, the coupling reaction takes place through two transition states, as follows: coordination of formaldehyde with the ruthenium(II) center occurs through the first transition state, to afford an (eta (1)-allyl)ruthenium(II) formaldehyde complex, RuBr(eta (1)-C3H5)(HCHO)(CO)(3), as an intermediate, and then C-C bond formation between the eta (1)-allyl ligand and formaldehyde takes place through the second transition state, to afford RuBr(OCH2CH2CH=CH2)(CO)(3). The activation energy (E-a) is 19.9 (12.0) kcal/mol for the first transition state and 12.5 (5.4) kcal/mol for the second transition state, where the values given without parentheses are E-a values calculated with the MP4(SDQ) method and the values in parentheses are those calculated with the DFT method. In I2 and I3, the coupling reaction proceeds through one transition state, to afford [Ru(OCH2CH2CH=CH2)(CO)(3)](+) and RuBr(OCH2- CH2CH=CH2)(CO)(2) with considerably larger E-a values of 50.7 (30.6) and 34.8 (32.0) kcal/mol, respectively. Even in I2, however, the allyl-aldehyde coupling reaction easily occurs through two transition states like that of R1, when one more formaldehyde molecule coordinates with the ruthenium(II) center; the E-a value is 10.5 (4.6) kcal/mol for the first transition state and 13.6 (6.7) kcal/mol for the second transition state. In this case, one formaldehyde molecule plays the role of a spectator ligand and the second formaldehyde undergoes a coupling reaction with the allyl ligand. From these results, it should be concluded that the allyl-aldehyde coupling reaction proceeds easily in the coordinatively saturated (eta (3)-allyl)ruthenium(II) complex and that the coordinatively unsaturated (eta (3)-allyl)ruthenium(II) complex becomes reactive when two molecules of formaldehyde coordinate with the ruthenium(II) center. IRC calculation of the allyl-aldehyde coupling reaction of R1 clearly shows that the C-C bond formation between the eta (1)-allyl ligand and formaldehyde occurs after the second transition state concomitantly with the bond alternation in the eta (1)-allyl ligand. Electron redistribution in the reaction indicates that the allyl-aldehyde coupling reaction is understood in terms of electrophilic attack of formaldehyde to the allyl ligand. Reverse C-C bond cleavage proceeds with a moderate E-a value of 16.6 (13.5) kcal/mol in [Ru(OCH2CH2CH=CH2)(CO)(3)](+) to afford [Ru(eta (3)-C3H5)(HCHO)(CO)(3)](+), with a similar E-a value of 19.6 (11.1) kcal/mol in RuBr(OCH2CH2CH=CH2)(CO)(3) to afford RUBr(eta (3)-C3H5)(CO)(3) + HCHO, and with a considerably large E-a value of 27.0 (26.8) kcal/mol in RuBr(OCH2CH2-CH=CH2)(CO)(2) to afford RuBr(eta (3)-C3H5)(HCHO)(CO)(2). [Ru(OCH2CH2CH=CH2)(CO)(3)](+) is the best for this C-C bond cleavage. This is because the coordinatively unsaturated complex with electron-accepting ligands yields a stable (eta (3)-allyl)ruthenium(II) complex in which the eta (3)-allyl ligand is strongly electron donating and needs two coordination sites. Though the C-C bond cleavage of RuBr(OCH2CH2CH=CH2)(CO)(3) occurs with a moderate E-a value, this reaction is much less exothermic than that of [Ru(OCH2CH2CH=CH2)(CO)(3)](+). [References: 115]
机译:甲醛与RUBr(eta(3)-C3H5)(CO)(3)(R1),[RU(eta(3)-C3H5)(HCHO)(CO)(3)](+)(I2)的偶联反应,并从头开始使用MP2-MP4(SDQ),CCSD(T)和DFT(B3LYP)方法对RuBr(eta(3)-C3H5)(HCHO)(CO)(2)(I3)进行了理论研究。在R1中,偶联反应通过两个过渡态发生,如下所示:甲醛与钌(II)中心的配位通过第一个过渡态发生,从而得到(eta(1)-烯丙基)钌(II)甲醛络合物中间体RuBr(eta(1)-C3H5)(HCHO)(CO)(3),然后通过第二个过渡态在eta(1)-烯丙基配体与甲醛之间形成CC键,得到RuBr(OCH2CH2CH = CH2)(CO)(3)。对于第一个过渡态,活化能(Ea)为19.9(12.0)kcal / mol,对于第二个过渡态,活化能(Ea)为12.5(5.4)kcal / mol,其中不带括号的值是使用MP4(SDQ)方法计算的Ea值括号中的值是使用DFT方法计算的值。在I2和I3中,偶联反应通过一个过渡态进行,从而获得[Ru(OCH2CH2CH = CH2)(CO)(3)](+)和RuBr(OCH2- CH2CH = CH2)(CO)(2)较大的Ea值分别为50.7(30.6)和34.8(32.0)kcal / mol。然而,即使在I2中,当一个以上的甲醛分子与钌(II)中心配位时,烯丙基-醛偶联反应也很容易通过R1的两个过渡态发生。对于第一过渡态,E-a值为10.5(4.6)kcal / mol,对于第二过渡态,E-a值为13.6(6.7)kcal / mol。在这种情况下,一个甲醛分子起旁观者配体的作用,第二个甲醛分子与烯丙基配体发生偶联反应。从这些结果可以得出结论,烯丙基-醛偶联反应易于在配位饱和的(η(3)-烯丙基)钌(II)配合物中进行,而配位不饱和的(η(3)-烯丙基)钌(II)当两个甲醛分子与钌(II)中心配位时,络合物开始发生反应。 IRC计算R1的烯丙基-醛偶联反应可清楚地表明,η(1)-烯丙基配体与甲醛之间的C-C键形成是在第二个过渡态之后发生的,同时在eta(1)-烯丙基配体中发生键交替。反应中的电子再分布表明烯丙基-醛偶联反应是根据甲醛对烯丙基配体的亲电攻击来理解的。反向CC键裂解在[Ru(OCH2CH2CH = CH2)(CO)(3)](+)中以16.6(13.5)kcal / mol的中等Ea值进行,以提供[Ru(eta(3)-C3H5)(HCHO) )(CO)(3)](+),在RuBr(OCH2CH2CH = CH2)(CO)(3)中具有相似的Ea值为19.6(11.1)kcal / mol,得到RUBr(eta(3)-C3H5)( CO)(3)+ HCHO,并且在RuBr(OCH2CH2-CH = CH2)(CO)(2)中具有相当大的Ea值为27.0(26.8)kcal / mol,得到RuBr(eta(3)-C3H5)( HCHO)(CO)(2)。 [Ru(OCH2CH2CH = CH2)(CO)(3)](+)最适合进行这种C-C键裂解。这是因为具有电子接受配体的配位不饱和配合物可生成稳定的(eta(3)-烯丙基)钌(II)配合物,其中eta(3)-烯丙基配体是强电子给体,需要两个配位点。尽管以中等Ea值进行RuBr(OCH2CH2CH = CH2)(CO)(3)的CC键裂解,但该反应比[Ru(OCH2CH2CH = CH2)(CO)(3)]的放热要小得多。 )。 [参考:115]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号