首页> 外文期刊>technologies >Learning from Outputs: Improving Multi-Object Tracking Performance by Tracker Fusion
【24h】

Learning from Outputs: Improving Multi-Object Tracking Performance by Tracker Fusion

机译:从输出中学习:通过 Tracker Fusion 提高多目标跟踪性能

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an approach to improving visual object tracking performance by dynamically fusing the results of two trackers, where the scheduling of trackers is determined by a support vector machine (SVM). By classifying the outputs of other trackers, our method learns their behaviors and exploits their complementarity to enhance tracking accuracy and robustness. Our approach consistently surpasses the performance of individual trackers within the ensemble. Despite being trained on only 4 sequences and tested on 144 sequences from the VOTS2023 benchmark, our approach achieves a Q metric of 0.65. Additionally, our fusion strategy demonstrates versatility across different datasets, achieving 73.7 MOTA on MOT17 public detections and 82.8 MOTA on MOT17 private detections. On the MOT20 dataset, it achieves 68.6 MOTA on public detections and 79.7 MOTA on private detections, setting new benchmarks in multi-object tracking. These results highlight the potential of using an ensemble of trackers with a learner-based scheduler to significantly improve tracking performance.
机译:本文提出了一种通过动态融合两个跟踪器的结果来提高视觉对象跟踪性能的方法,其中跟踪器的调度由支持向量机 (SVM) 决定。通过对其他跟踪器的输出进行分类,我们的方法学习它们的行为并利用它们的互补性来提高跟踪的准确性和稳健性。我们的方法始终优于集成中单个跟踪器的性能。尽管只在 4 个序列上进行了训练,并在 VOTS2023 基准的 144 个序列上进行了测试,但我们的方法实现了 0.65 的 Q 指标。此外,我们的融合策略展示了跨不同数据集的多功能性,在 MOT17 公共检测上实现了 73.7 MOTA,在 MOT17 私有检测上实现了 82.8 MOTA。在 MOT20 数据集上,它在公共检测上实现了 68.6 MOTA,在私有检测上实现了 79.7 MOTA,在多目标跟踪方面树立了新的标杆。这些结果凸显了将跟踪器系综与基于学习者的调度程序结合使用以显著提高跟踪性能的潜力。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号