首页> 外文期刊>Accounts of Chemical Research >Heavy Metal-Based Toxic Oxo-Pollutants Sequestration by Advanced Functional Porous Materials for Safe Drinking Water
【24h】

Heavy Metal-Based Toxic Oxo-Pollutants Sequestration by Advanced Functional Porous Materials for Safe Drinking Water

机译:通过先进的功能性多孔材料封存重金属基有毒氧化污染物,确保安全饮用水

获取原文
获取原文并翻译 | 示例

摘要

Conspectus Water scarcity as a consequence of either environmental or economic actions is the most compelling global concern of the 21st century, as ∼2 billion people (26 of the total population) struggle to access safe drinking water and ∼3.6 billion (46 of the total population) lack access to clean water sanitation. In this context, groundwater pollution by toxic heavy metals and/or their oxo-pollutants, such as CrO4 2–, Cr2O7 2–, AsO4 3–, SeO3 2–, SeO4 2–, TcO4 –, UO2 2+, etc., have been becoming rapidly growing global concerns. The severe toxicity upon bioaccumulation of these oxo-anions has prompted the US Environment Protection Agency (EPA) to mark these persistent and hazardous substances as priority pollutants. Additionally, the heavy-metal-based pollutants are difficult to transform into eco-friendly substances, thus presenting serious challenges toward human health and environmental preservation. To this end, the emergence of advanced functional porous materials (AFPMs), including metal–organic frameworks (MOFs), covalent organic frameworks (COFs), metal–organic polyhedrons (MOPs), porous organic polymers (POPs), etc., have presented extraordinary opportunities in material research and water treatment applications. The liberty in designing and structural tunability of AFPMs, facilitated by utilization of structure-encoded molecular building blocks, enables precise control over target-specificity and structure–property correlations. Bridging the gap between strategic material design and on-demand real-world application can facilitate the development of next-generation sorbents/ion-exchangers for efficient water treatment.In this Account, we summarize the recent advancements from our group toward the development of cutting-edge multifunctional ionic-porous sorbents, offering viable solutions toward providing clean and safe drinking water. Our vision allows us to comprehend this challenge through two strategic factors: efficient oxo-anion capture via ion-exchange and specific host–guest interactions via installation of modular functional groups. To provide an overview, we first highlight the different structural variants and coexistance of various toxic oxo-anions depending on the pH of the medium and their adverse effects. Next, we highlight the promising potential of water stable cationic MOFs toward selective remediation of toxic Cr­(VI), Mn­(VII), Tc­(VI), Se­(IV), Se­(VI), U (VI), As­(III), and As­(V)-based toxic oxo-pollutants from water. In the subsequent sections, we summarize the target-specific design strategies and oxo-anion remediation performances of ionic porous organic polymers and hybrid functional porous materials. The key role of target-specific designability and/or structural fine-tuning of AFPMs toward preferential sorption of oxo-pollutants is systematically demonstrate. Particularly, the role of ion-exchange (anion-exchange) processes toward targeted oxo-pollutant capture by ionic AFPMs has been discussed in details. In several examples, the AFPMs were successful in reducing the toxic oxo-anion concentration levels lower than the permitted values for drinking water by the World Health Organizing Committee (WHO), showcasing their real-world applicability potency.Our contemporaneous endeavors in exploring ionic AFPMs for selective toxic oxo-anion sequestration may serve as a blueprint to researchers for future development of the next generation sorbent materials for energy-economically feasible water treatment methods.
机译:Conspectus 环境或经济行动导致的水资源短缺是 21 世纪最紧迫的全球问题,因为约 20 亿人(占总人口的 26%)难以获得安全饮用水,约 36 亿人(占总人口的 46%)无法获得清洁水卫生设施。在此背景下,有毒重金属和/或其羰基污染物(如 CrO4 2–、Cr2O7 2–、AsO4 3–、SeO3 2–、SeO4 2–、TcO4–、UO2 2+ 等)对地下水的污染已成为全球日益关注的问题。这些含氧阴离子在生物积累时的严重毒性促使美国环境保护署 (EPA) 将这些持久性和有害物质标记为优先污染物。此外,重金属基污染物难以转化为环保物质,对人类健康和环境保护提出了严峻挑战。为此,先进的功能性多孔材料 (AFPM) 的出现,包括金属有机框架 (MOF)、共价有机框架 (COF)、金属有机多面体 (MOP)、多孔有机聚合物 (POP) 等,为材料研究和水处理应用提供了非凡的机会。通过利用结构编码的分子构建块,AFPM 的设计和结构可调性得到了促进,从而能够精确控制靶标特异性和结构-性质相关性。弥合战略材料设计和按需实际应用之间的差距可以促进开发用于高效水处理的下一代吸附剂/离子交换剂。在本报告中,我们总结了我们集团在开发尖端多功能离子多孔吸附剂方面的最新进展,为提供清洁和安全的饮用水提供了可行的解决方案。我们的愿景使我们能够通过两个战略因素来理解这一挑战:通过离子交换实现高效的氧阴离子捕获,以及通过安装模块化官能团实现特定的主客体相互作用。为了提供概述,我们首先强调各种有毒羰阴离子的不同结构变体和共存,具体取决于培养基的 pH 值及其不利影响。接下来,我们强调了水稳定的阳离子 MOF 在选择性修复水中有毒 Cr(VI)、Mn(VII)、Tc(VI)、Se(IV)、Se(VI)、U (VI)、As(III) 和 As(V) 的有毒含氧污染物方面的潜力。在后续章节中,我们总结了离子多孔有机聚合物和混合功能多孔材料的靶标特异性设计策略和氧阴离子修复性能。系统地证明了 AFPM 的特定目标可设计性和/或结构微调对优先吸附羰基污染物的关键作用。特别是,已经详细讨论了离子交换(阴离子交换)过程对离子 AFPM 靶向捕获氧污染物的作用。在几个例子中,AFPM 成功地将有毒氧阴离子浓度水平降低到低于世界卫生组织组织委员会 (WHO) 允许的饮用水值,展示了它们在现实世界中的适用性。我们同时在探索离子 AFPM 用于选择性有毒氧阴离子封存的努力可能为研究人员未来开发用于能源经济可行的水处理方法的下一代吸附剂材料提供蓝图。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号