首页> 外文期刊>Computers & operations research >Solving the Online On-Demand Warehousing Problem
【24h】

Solving the Online On-Demand Warehousing Problem

机译:解决 Online On-Demand Warehousing 问题

获取原文
获取原文并翻译 | 示例

摘要

? 2024 The Author(s)In On-Demand Warehousing, an online platform acts as a central mechanism to match unused storage space and related services offered by suppliers to customers. Storage requests can be for small capacities and very short commitment periods if compared to traditional leasing models. The objective of the On-Demand Warehousing Problem (ODWP) is to maximize the number of successful transactions among the collected offers and requests, considering the satisfaction of both the supply and demand side to preserve future participation to the platform. The Online ODWP can be modeled as a stochastic reservation and assignment problem, where dynamically arriving requests of customers must be rapidly assigned to suppliers. Firstly, an online stochastic combinatorial optimization framework is adapted to the Online ODWP. The key idea of this approach is to generate samples of future requests by evaluating possible allocations for the current request against these samples. In addition, expectation, consensus, and regret, and two greedy algorithms are implemented. All solution methods are compared on a dataset of realistic instances of different sizes and features, demonstrating their effectiveness compared to the oracle solutions, which are based on the assumption of perfect information about future request arrivals. A newly proposed approach of risk approximation is shown to outperform alternative algorithms on large instances. Managerial insights regarding acceptance and rejection strategies for the platform are derived. It is shown how requests with large demand, long time frame, not very long spanning time, and average compatibility degree, are very likely to be rejected in the optimal solution.
机译:?2024 作者在按需仓储中,在线平台充当中央机制,将供应商提供给客户的未使用的存储空间和相关服务相匹配。与传统租赁模型相比,存储请求可能适用于小容量和非常短的承诺期。按需仓储问题 (ODWP) 的目标是在考虑供需双方的满意度的情况下,最大限度地提高收集到的报价和请求中成功交易的数量,以保持未来对平台的参与。在线 ODWP 可以建模为随机预订和分配问题,其中动态到达的客户请求必须快速分配给供应商。首先,将在线随机组合优化框架适配于在线 ODWP。此方法的关键思想是通过根据这些样本评估当前请求的可能分配来生成未来请求的样本。此外,还实现了 expectation、consensus、reret 和两种贪婪算法。所有解决方案方法都在不同大小和功能的真实实例的数据集上进行了比较,证明了它们与 Oracle 解决方案相比的有效性,后者基于对未来请求到达的完美信息的假设。事实证明,一种新提出的风险近似方法在大型实例上优于替代算法。得出有关平台接受和拒绝策略的管理见解。该文显示了需求量大、时间范围长、跨越时间不是很长、兼容性一般的请求在最优解决方案中极有可能被拒绝。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号