首页> 外文期刊>Combustion and Flame >Analysis of weak secondary waves in a rotating detonation engine using large-eddy simulation and wavenumber-domain filtering
【24h】

Analysis of weak secondary waves in a rotating detonation engine using large-eddy simulation and wavenumber-domain filtering

机译:使用大涡模拟和波数域滤波分析旋转爆轰发动机中的弱次级波

获取原文
获取原文并翻译 | 示例

摘要

? 2024 The Combustion InstituteRotating detonation engines (RDEs) are pressure-gain combustion devices which allow for a compact and mechanically simple engine design with improved thermodynamic efficiency compared to traditional deflagration devices. However, achieving these gains in practical devices that are operated with non-premixed reactants requires overcoming non-idealities in the mixing and combustion process. We investigate these non-ideal effects in the Air Force Research Laboratory's rotating detonation rocket engine using large-eddy simulation. The simulation results are compared against experimental measurements, showing overall reasonable agreement for critical performance metrics of thrust, specific impulse, and chamber pressure. A wavenumber-domain filtering method is presented to separate the clockwise-rotating waves and counter-clockwise waves, which enables the unambiguous identification of secondary weak waves and their interaction with detonation waves. The analysis of the flow field and response of the injectors shows that these interactions lead to precessing regions of higher pressure, characterized by less parasitic combustion, higher heat release rate, and higher injector blockage. Furthermore, the thrust contributed by the pressure gain combustion process during these interactions is significantly increased, which leads to a modulation of the overall thrust output of the engine. Novelty and significance statement This study analyzes non-ideal effects inherent to rotating detonation rocket engines (RDRE), which prevent achieving theoretically higher thermodynamic efficiencies compared to traditional deflagration devices. This manuscript has three major novel contributions: First, we assess the predictive accuracy of our large-eddy simulation approach in predicting the combustion performance of an RDRE at high-mass flow conditions, which is a benchmark case of the Model Validation for Propulsion workshop. As such, it contributes to the literature in identifying capabilities and deficiencies of current simulation tools in predicting such complex combustor configurations. Second, we extend the method of Bennewitz et al. AIAA Paper 2018-4688, 2018 and introduce a wavenumber domain filtering method as an efficient approach for separating clockwise and counter-clockwise rotating features in RDREs. This analysis tool is significantly simpler than other methods found in the literature, and enables a detailed analysis of detonation and secondary combustion modes. Third, this study contributes new knowledge about the role of secondary waves in RDREs. Specifically, the effects of these waves on the flow field and injector response are analyzed, showing that these effects are related to the overall thrust of the engine, which is the first time to the authors’ knowledge.
机译:?2024 燃烧研究所旋转爆震发动机 (RDE) 是增压燃烧装置,与传统的爆燃装置相比,它可实现紧凑且机械简单的发动机设计,具有更高的热力学效率。然而,在使用非预混反应物运行的实际设备中实现这些收益需要克服混合和燃烧过程中的非理想性。我们使用大涡流仿真研究了空军研究实验室旋转爆震火箭发动机中的这些非理想效应。将仿真结果与实验测量结果进行比较,显示推力、比冲和腔室压力的关键性能指标总体上合理一致。提出了一种波数域滤波方法,将顺时针旋转波和逆时针波分开,能够明确识别次级弱波及其与爆轰波的相互作用。对流场和喷油器响应的分析表明,这些相互作用导致高压进动区域,其特点是寄生燃烧较少、热释放速率较高和喷油器堵塞较高。此外,在这些相互作用过程中,压力增益燃烧过程贡献的推力显着增加,这导致发动机的总推力输出的调制。新颖性和意义声明 本研究分析了旋转爆震火箭发动机 (RDRE) 固有的非理想效应,与传统爆燃装置相比,这些效应阻碍了理论上更高的热力学效率。这份手稿有三个主要的新贡献:首先,我们评估了我们的大涡模拟方法在预测 RDRE 在高质量流动条件下的燃烧性能的预测准确性,这是推进模型验证研讨会的基准案例。因此,它有助于确定当前仿真工具在预测此类复杂燃烧室配置方面的能力和缺陷。其次,我们扩展了 Bennewitz 等人 [AIAA 论文 2018-4688, 2018] 的方法,并引入了波数域滤波方法,作为在 RDRE 中分离顺时针和逆时针旋转特征的有效方法。该分析工具比文献中的其他方法简单得多,并且能够对爆震和二次燃烧模式进行详细分析。第三,本研究为次级波在 RDRE 中的作用提供了新知识。具体来说,分析了这些波对流场和喷油器响应的影响,表明这些影响与发动机的整体推力有关,这是作者第一次知道。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号