首页> 外文期刊>IEEE sensors journal >A Task-Generic High-Performance Unsupervised Pre-Training Framework for ECG
【24h】

A Task-Generic High-Performance Unsupervised Pre-Training Framework for ECG

机译:一种用于 ECG 的任务通用高性能无监督预训练框架

获取原文
获取原文并翻译 | 示例

摘要

Electrocardiogram (ECG) feature extraction is an important step in applying machine learning for biomedical processing tasks. In deep learning studies centered on ECG data, established methods mainly rely on labeled data to automatically extract signal features. However, obtaining high-quality labeled records from open-source datasets is challenging, whereas many unlabeled data remain underused. Unsupervised pre-training methods have shown significant efficacy in using unlabeled datasets. Therefore, using unsupervised pre-training paradigms for ECG feature extraction could improve overall performance. This article presents an unsupervised pre-training framework based on a masked autoencoder (MAE) for extracting ECG signal features. An encoder-decoder framework is proposed to recover artificially masked ECGs. During the reconstruction process, the framework learns features from masked samples. Benefiting from the utilization of large-scale datasets, the framework enables learning generalized features and has a high performance for a wide range of deep learning tasks. In particular, the framework achieves an accuracy of 95.6 on the MITDB dataset for the ECG arrhythmia classification task and 98.8 on the ECGIDDB dataset for the human identification task. Evaluation using multiple downstream tasks and comparisons with the state-of-the-art confirm the validity of our proposed approach.
机译:心电图 (ECG) 特征提取是将机器学习应用于生物医学处理任务的重要步骤。在以 ECG 数据为中心的深度学习研究中,已建立的方法主要依靠标记数据来自动提取信号特征。然而,从开源数据集中获取高质量的标记记录具有挑战性,而许多未标记的数据仍未得到充分利用。无监督的预训练方法在使用未标记的数据集方面显示出显著的有效性。因此,使用无监督的预训练范式进行 ECG 特征提取可以提高整体性能。本文提出了一个基于掩码自动编码器 (MAE) 的无监督预训练框架,用于提取 ECG 信号特征。提出了一个编码器-解码器框架来恢复人工掩蔽的心电图。在重建过程中,框架从掩蔽样本中学习特征。得益于大规模数据集的利用,该框架能够学习通用特征,并在各种深度学习任务中具有高性能。特别是,该框架在 MITDB 数据集上实现了 95.6% 的心电图心律失常分类任务准确率,在 ECGIDDB 数据集上实现了 98.8% 的人类识别任务准确率。使用多个下游任务的评估以及与最先进的比较证实了我们提出的方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号