首页> 外文期刊>Ecohydrology >Estimation of actual evapotranspiration from different ecosystems on the Tibetan Plateau based on a generalized complementary evapotranspiration theory model
【24h】

Estimation of actual evapotranspiration from different ecosystems on the Tibetan Plateau based on a generalized complementary evapotranspiration theory model

机译:基于广义互补蒸散发理论模型的青藏高原不同生态系统实际蒸散量估算

获取原文
获取原文并翻译 | 示例

摘要

Abstract Actual evapotranspiration constitutes a vital component of the exchange of energy and water vapour between the soil‐vegetation and atmospheric systems on terrestrial terrain. Nevertheless, the Tibetan Plateau, owing to its austere environmental conditions, harbours a scarcity of terrestrial monitoring stations. This circumstance presents a formidable challenge in attaining precise estimations of actual evapotranspiration. The complementary relationship method is a potential approach because it requires only routine meteorological data to estimate actual evapotranspiration on a regional or global scale. However, the suitability of the complementary relationship model across diverse ecosystems on the Tibetan Plateau necessitates further investigation. In this study, we scrutinized the simulation of daily and monthly actual evapotranspiration across 18 observation sites spanning eight distinct land use categories on the Tibetan Plateau. We employed the polynomial generalized complementary function introduced by Brutsaert (B2015), alongside its enhanced rendition proposed by Szilagyi (S2017) and Crago (C2018). The outcomes reveal that all three models adeptly replicate the fluctuations in actual evapotranspiration, irrespective of land use category or temporal scale—whether daily or monthly. This is true regardless of whether original or calibrated parameter values are applied. However, there exist significant variations in the performance of these models. In general, the C2018 model demonstrates superior performance across most ecosystems when original parameters are employed. Following parameter calibration, the simulation efficacy of the models experienced marked enhancement. Post parameter calibration, the B2015 model outperforms the other two models notably in desert and wetland environments. Furthermore, the simulation outputs from all three models display heightened sensitivity to parameter α, particularly in the context of the C2018 and S2017 models. These findings suggest that accurate estimation of parameter values is critical to improving the accuracy of estimating actual evapotranspiration. Calibrated parameter values, contingent on a fusion of vegetation, meteorology and surface roughness, exhibit variability across diverse ecosystems.
机译:摘要 实际蒸散构成了陆地地形上土壤植被和大气系统之间能量和水蒸气交换的重要组成部分。然而,由于环境条件恶劣,青藏高原缺乏地面监测站。这种情况为精确估计实际蒸散量带来了巨大的挑战。互补关系法是一种潜在的方法,因为它只需要常规气象数据来估计区域或全球范围内的实际蒸散量。然而,互补关系模型在青藏高原不同生态系统中的适用性需要进一步研究。在这项研究中,我们仔细研究了青藏高原 8 个不同土地利用类别的 18 个观测点的每日和每月实际蒸散量模拟。我们采用了 Brutsaert (B2015) 引入的多项式广义互补函数,以及 Szilagyi (S2017) 和 Crago (C2018) 提出的增强演绎。结果表明,所有三个模型都巧妙地复制了实际蒸散量的波动,而与土地利用类别或时间尺度无关——无论是每天还是每月。无论应用的是原始参数值还是校准参数值,都是如此。但是,这些模型的性能存在显著差异。一般来说,当采用原始参数时,C2018 模型在大多数生态系统中表现出卓越的性能。参数校准后,模型的仿真效果得到了显著提高。参数校准后,B2015 模型的性能优于其他两个模型,尤其是在沙漠和湿地环境中。此外,所有三个模型的仿真输出都显示出对参数α的高度敏感性,尤其是在 C2018 和 S2017 模型的上下文中。这些发现表明,准确估计参数值对于提高估计实际蒸散量的准确性至关重要。校准参数值取决于植被、气象和表面粗糙度的融合,在不同生态系统中表现出可变性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号