首页> 外文期刊>Journal of mechanical and production engineering >APPLICATION OF FEATURE CORRELATION ON MEDICAL BIG DATA ANALYSIS USING DEEP LEARNING
【24h】

APPLICATION OF FEATURE CORRELATION ON MEDICAL BIG DATA ANALYSIS USING DEEP LEARNING

机译:基于深度学习的特征关联在医疗大数据分析中的应用

获取原文
获取原文并翻译 | 示例

摘要

This research describes a fully intelligent and automated brain tumor segmentation system depending on Deep Convolutional Neural Networks with feature correlation. Hierarchical CNN model motivated the system design, which was tweaked to improve brain tumor detection performance. Both the BraTS' 2018 training and testing datasets were used to implement and refine the proposed method. Additionally, we have compared the two models i.e; with feature correlation learning model and without feature correlation learning model on the basis of accuracy and model loss and it revealed that with feature correlation learning model achieved the accuracy of 99 with minimum loss value of 2. This shows that transfer-learning model outperforms without feature correlation learning model.
机译:本研究描述了一种完全智能和自动化的脑肿瘤分割系统,该系统依赖于具有特征相关性的深度卷积神经网络。分层 CNN 模型激发了系统设计,对其进行了调整以提高脑肿瘤检测性能。BraTS 的 2018 年训练和测试数据集都用于实施和改进所提出的方法。此外,我们还比较了这两种模型,即;使用特征相关学习模型和无特征相关学习模型,基于准确率和模型损失,结果表明,使用特征相关学习模型实现了 99% 的准确率,最小损失值为 2%。这表明,在没有特征关联学习模型的情况下,迁移学习模型的表现优于其他模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号