首页> 外文期刊>Journal of vibration and control: JVC >Fault diagnosis of rolling bearing based on BP neural network with fractional order gradient descent
【24h】

Fault diagnosis of rolling bearing based on BP neural network with fractional order gradient descent

机译:基于BP神经网络的分数阶梯度下降滚动轴承故障诊断

获取原文
获取原文并翻译 | 示例

摘要

The health of rolling bearing is of great importance for the normal operation of rotating machinery. The fault diagnosis process can be roughly summarized as signal processing, feature extraction, and fault classification. In this paper, a novel feature extraction and fault diagnosis method with fractional order back-propagation neural network is put forward. The new sine cosine algorithm optimized variational mode decomposition is performed on vibration signals, and the fault feature vectors are selected and built by singular value decomposition. Inspired by the fractional order calculus, a fractional order back-propagation neural network is employed to realize fault classification. The capability of the developed fault diagnosis algorithm is comprehensively evaluated via benchmark bearing data. The experimental results demonstrate that the designed method substantially extracts bearing defect features, increases classification accuracy and efficiency, and also outperforms existing algorithms.
机译:滚动轴承的健康对于旋转机械的正常运行具有重要意义。故障诊断过程大致可以概括为信号处理、特征提取和故障分类。该文提出了一种基于分数阶反向传播神经网络的特征提取和故障诊断方法。对振动信号进行新的正弦余弦算法优化变分模态分解,通过奇异值分解选择和构建故障特征向量。受分数阶演算的启发,采用分数阶反向传播神经网络实现故障分类。通过基准轴承数据,对所开发的故障诊断算法的能力进行了综合评估。实验结果表明,所设计方法能够基本提取轴承缺陷特征,提高分类精度和效率,且性能优于现有算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号