首页> 外文期刊>Proceedings of the Institution of Mechanical Engineers, Part G. Journal of aerospace engineering >Calculate the ignition height of the vertical landing phase online for the reusable rocket
【24h】

Calculate the ignition height of the vertical landing phase online for the reusable rocket

机译:在线计算可重复使用火箭垂直着陆阶段的点火高度

获取原文
获取原文并翻译 | 示例

摘要

For the vertical landing phase of the reusable rocket, in order to improve the landing accuracy with consideration of multiple uncertainties, a novel strategy to calculate the ignition height online is proposed based on polynomial guidance law (PGL), particle swarm optimization (PSO), and deep reinforcement learning (DRL). Firstly, a deep neural network (DNN) is designed to describe the relationship between the state of the reusable rocket and the ignition height. To accomplish the guidance task of the vertical landing phase, PGL is modified by introducing the estimated aerodynamic acceleration. Through simulation, the output range of the DNN is estimated by the modified PSO. Then, the reward function is shaped and the parameters of the DNN are trained on a training set of simulation scenarios by the DRL algorithm. Finally, to demonstrate the effectiveness of the proposed strategy, the trained DNN is used to calculate the ignition height of 1500 unlearned simulation scenarios online. The numerical simulation results show that the proposed strategy has higher landing accuracy and lower fuel consumption than the offline strategy of fixed ignition height based on the modified PSO.
机译:针对可重复使用火箭垂直着陆阶段,为了在考虑多重不确定性的情况下提高着陆精度,该文提出一种基于多项式制导律(PGL)、粒子群优化(PSO)和深度强化学习(DRL)的在线点火高度计算策略。首先,设计了深度神经网络(DNN)来描述可重复使用火箭的状态与点火高度之间的关系。为了完成垂直着陆阶段的引导任务,通过引入估计的气动加速度对PGL进行改进。通过仿真,通过改进的PSO估计了DNN的输出范围。然后,对奖励函数进行整形,并利用DRL算法在一组仿真场景的训练集上训练DNN的参数。最后,为了验证所提策略的有效性,利用训练好的DNN在线计算了1500个未学习的仿真场景的点火高度。数值仿真结果表明,与基于改进的PSO固定点火高度离线策略相比,所提策略具有更高的着陆精度和更低的油耗。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号