首页> 外文期刊>journal of theoretical and applied information technology >BILAE-GAN FRAMEWORK FOR ANOMALY DETECTION IN VIDEO SURVEILLANCE
【24h】

BILAE-GAN FRAMEWORK FOR ANOMALY DETECTION IN VIDEO SURVEILLANCE

机译:用于视频监控异常检测的 BILAE-GAN 框架

获取原文

摘要

© 2023 Little Lion Scientific.In recent years, increasing the use of surveillance cameras with less manpower makes automatic video surveillance systems to become more important. Recent advances in video anomaly identification have mostly focused on improving performance with available datasets. We propose a Bidirectional Long-Short term memory-based Convolutional Autoencoder Generative Adversarial Network (BiLAE-GAN) method for video surveillance. During training the model learns the normal data distribution of data in the Generator and the detection of anomalies in the discriminator. Bidirectional Long-Short term network in Convolutional Autoencoder in Generator for reconstruction, Encoder features of Generated image and real image to discriminator to identify Anomaly. At the anomaly detection phase, anomalies are identified based on reconstruction error and discrimination results. Our proposed method validation benchmark datasets such as UCSD Ped1, UCSD Ped2, and CHUCK Avenue dataset with performance metrics AUC, EER.
机译:© 2023 小狮子 Scientific.In 近年来,越来越多地使用人力较少的监控摄像机,使得自动视频监控系统变得更加重要。视频异常识别的最新进展主要集中在利用可用数据集提高性能上。本文提出了一种基于双向长短期记忆的卷积自编码器生成对抗网络(BiLAE-GAN)视频监控方法。在训练过程中,模型会学习生成器中数据的正态数据分布以及鉴别器中异常的检测。Generator中的卷积自编码器中的双向长短期网络用于重建,将生成的图像和真实图像的编码器特征提供给判别器以识别异常。在异常检测阶段,根据重建误差和判别结果识别异常。我们提出的方法验证基准数据集,例如 UCSD Ped1、UCSD Ped2 和 CHUCK Avenue 数据集,其性能指标为 AUC、EER。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号