首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >Modeling Multi‐Material Structural Patterns in Tectonic Flow With a Discontinuous Galerkin Level Set Method
【24h】

Modeling Multi‐Material Structural Patterns in Tectonic Flow With a Discontinuous Galerkin Level Set Method

机译:使用非连续伽辽金水平集方法模拟构造流中的多材料结构模式

获取原文
获取原文并翻译 | 示例

摘要

Abstract We formulate a numerical framework, in both 2d and 3d, to model the structural patterns emerging from creeping viscous flow typically encountered in long‐term ductile lithospheric deformation by coupling the discontinuous Galerkin level set method with a finite element Stokes‐like flow solver. The level set formulation has the advantage of retaining information on the interface geometry, decreased memory requirement and improved computational efficiency from the two‐way particle‐mesh information transfer compared to particle‐in‐cell methods. Furthermore, our formulation fully exploits the advantages of the finite element method (e.g., the flexibility of mesh geometry and the ease of handling anisotropic materials) by using a unified finite element framework. The novelty of our formulation is the capability to offer a fully dynamic approach for modeling structural patterns resulting from a tectonic flow that is non‐steady and inhomogeneous. The material distribution and the finite deformation patterns predicted from the numerical model can be directly compared with geological map patterns (e.g., lithological distribution at specified depths and on cross‐sections) and field structural analyses (e.g., foliation, lineation and strain patterns), thus offering the possibility of ground‐truthing the modeling results by field evidence. As examples for potential applications of our method, we apply our method to the modeling of a competent inclusion in simple shear flow, as well as a Rayleigh‐Taylor type density overturn. Our models demonstrate good agreement with previous 2d benchmark results and produce 3d lithological and deformation patterns comparable to field observations.
机译:摘要 将不连续Galerkin水平集方法与有限元Stokes流动求解器耦合,构建了二维和三维的二维数值框架,对长期韧性岩石圈变形中常见的蠕变粘性流动产生的结构模式进行了建模。与粒子单元方法相比,水平集公式的优点是保留了界面几何上的信息,降低了内存需求,并通过双向粒子-网格信息传输提高了计算效率。此外,我们的公式通过使用统一的有限元框架,充分利用了有限元方法的优点(例如,网格几何形状的灵活性和易于处理各向异性材料)。我们公式的新颖之处在于能够提供一种完全动态的方法,用于模拟由非稳定和不均匀的构造流动产生的结构模式。数值模型预测的材料分布和有限变形模式可以直接与地质图模式(如指定深度和横断面的岩性分布)和现场结构分析(如叶状、线状和应变模式)进行比较,从而提供了通过现场证据对建模结果进行地面实况分析的可能性。作为我们方法的潜在应用的例子,我们将我们的方法应用于简单剪切流中合格夹杂物的建模,以及瑞利-泰勒型密度翻转。我们的模型与之前的二维基准结果非常吻合,并产生了与现场观察结果相当的三维岩性和变形模式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号