首页> 外文期刊>sensors >A Combined Virtual Electrode-Based ESA and CNN Method for MI-EEG Signal Feature Extraction and Classification
【24h】

A Combined Virtual Electrode-Based ESA and CNN Method for MI-EEG Signal Feature Extraction and Classification

机译:基于虚拟电极的ESA和CNN相结合的MI-EEG信号特征提取与分类方法

获取原文
获取原文并翻译 | 示例

摘要

A Brain-Computer Interface (BCI) is a medium for communication between the human brain and computers, which does not rely on other human neural tissues, but only decodes Electroencephalography (EEG) signals and converts them into commands to control external devices. Motor Imagery (MI) is an important BCI paradigm that generates a spontaneous EEG signal without external stimulation by imagining limb movements to strengthen the brain's compensatory function, and it has a promising future in the field of computer-aided diagnosis and rehabilitation technology for brain diseases. However, there are a series of technical difficulties in the research of motor imagery-based brain-computer interface (MI-BCI) systems, such as: large individual differences in subjects and poor performance of the cross-subject classification model; a low signal-to-noise ratio of EEG signals and poor classification accuracy; and the poor online performance of the MI-BCI system. To address the above problems, this paper proposed a combined virtual electrode-based EEG Source Analysis (ESA) and Convolutional Neural Network (CNN) method for MI-EEG signal feature extraction and classification. The outcomes reveal that the online MI-BCI system developed based on this method can improve the decoding ability of multi-task MI-EEG after training, it can learn generalized features from multiple subjects in cross-subject experiments and has some adaptability to the individual differences of new subjects, and it can decode the EEG intent online and realize the brain control function of the intelligent cart, which provides a new idea for the research of an online MI-BCI system.
机译:脑机接口(BCI)是人脑与计算机之间通信的媒介,它不依赖于其他人体神经组织,而只解码脑电图(EEG)信号并将其转换为命令来控制外部设备。运动意象(MI)是一种重要的脑机接口范式,它通过想象肢体运动来产生自发的脑电信号,无需外界刺激,增强大脑的代偿功能,在脑部疾病的计算机辅助诊断和康复技术领域具有广阔的前景。然而,基于运动意象的脑机接口(MI-BCI)系统研究存在一系列技术难点,如:受试者个体差异大,跨学科分类模型性能差;脑电信号信噪比低,分类精度差;以及MI-BCI系统的在线性能不佳。针对上述问题,本文提出了一种基于虚拟电极的脑电源分析(ESA)和卷积神经网络(CNN)相结合的MI-EEG信号特征提取和分类方法。结果表明,基于该方法开发的在线MI-BCI系统在训练后可以提高多任务MI-EEG的解码能力,它可以在跨学科实验中学习来自多个受试者的广义特征,并且对新受试者的个体差异具有一定的适应性,并且可以在线解码EEG意图并实现智能推车的脑控功能。 为在线MI-BCI系统的研究提供了新的思路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号