首页> 外文期刊>Medical mycology : >Segmentation of hyphae and yeast in fungi-infected tissue slice images and its application in analyzing antifungal blue light therapy
【24h】

Segmentation of hyphae and yeast in fungi-infected tissue slice images and its application in analyzing antifungal blue light therapy

机译:真菌感染组织切片图像中菌丝和酵母的分割及其在抗真菌蓝光疗法分析中的应用

获取原文
获取原文并翻译 | 示例

摘要

Candida albicans is a pathogenic fungus that undergoes morphological transitions between hyphal and yeast forms, adapting to diverse environmental stimuli and exhibiting distinct virulence. Existing research works on antifungal blue light (ABL) therapy have either focused solely on hyphae or neglected to differentiate between morphologies, obscuring potential differential effects. To address this gap, we established a novel dataset of 150 C. albicans-infected mouse skin tissue slice images with meticulously annotated hyphae and yeast. Eleven representative convolutional neural networks were trained and evaluated on this dataset using seven metrics to identify the optimal model for segmenting hyphae and yeast in original high pixel size images. Leveraging the segmentation results, we analyzed the differential impact of blue light on the invasion depth and density of both morphologies within the skin tissue. U-Net-BN outperformed other models in segmentation accuracy, achieving the best overall performance. While both hyphae and yeast exhibited significant reductions in invasion depth and density at the highest ABL dose (180 J/cm2), only yeast was significantly inhibited at the lower dose (135 J/cm2). This novel finding emphasizes the importance of developing more effective treatment strategies for both morphologies.We studied the effects of blue light therapy on hyphal and yeast forms of Candida albicans. Through image segmentation techniques, we discovered that the changes in invasion depth and density differed between these two forms after exposure to blue light.
机译:白色念珠菌是一种致病性真菌,在菌丝和酵母形式之间发生形态转变,适应不同的环境刺激并表现出独特的毒力。现有的抗真菌蓝光 (ABL) 疗法研究工作要么只关注菌丝,要么忽视了区分形态,掩盖了潜在的差异效应。为了弥补这一差距,我们建立了一个新的数据集,其中包含 150 个白色念珠菌感染的小鼠皮肤组织切片图像,这些图像带有精心注释的菌丝和酵母。在该数据集上训练和评估了 11 个具有代表性的卷积神经网络,使用 7 个指标来确定在原始高像素尺寸图像中分割菌丝和酵母的最佳模型。利用分割结果,我们分析了蓝光对皮肤组织内两种形态的侵入深度和密度的差异影响。U-Net-BN在分割精度上优于其他模型,取得了最佳的整体性能。虽然菌丝和酵母在最高ABL剂量(180 J/cm2)下均表现出侵袭深度和密度的显着降低,但只有酵母在较低剂量(135 J/cm2)下受到显着抑制。这一新发现强调了为这两种形态制定更有效的治疗策略的重要性。我们研究了蓝光疗法对菌丝和酵母形式的白色念珠菌的影响。通过图像分割技术发现,这两种形式在蓝光照射后,侵入深度和密度的变化存在差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号