首页> 外文期刊>entropy >FLPP: A Federated-Learning-Based Scheme for Privacy Protection in Mobile Edge Computing
【24h】

FLPP: A Federated-Learning-Based Scheme for Privacy Protection in Mobile Edge Computing

机译:FLPP:一种基于联邦学习的移动边缘计算隐私保护方案

获取原文
获取原文并翻译 | 示例

摘要

Data sharing and analyzing among different devices in mobile edge computing is valuable for social innovation and development. The limitation to the achievement of this goal is the data privacy risk. Therefore, existing studies mainly focus on enhancing the data privacy-protection capability. On the one hand, direct data leakage is avoided through federated learning by converting raw data into model parameters for transmission. On the other hand, the security of federated learning is further strengthened by privacy-protection techniques to defend against inference attack. However, privacy-protection techniques may reduce the training accuracy of the data while improving the security. Particularly, trading off data security and accuracy is a major challenge in dynamic mobile edge computing scenarios. To address this issue, we propose a federated-learning-based privacy-protection scheme, FLPP. Then, we build a layered adaptive differential privacy model to dynamically adjust the privacy-protection level in different situations. Finally, we design a differential evolutionary algorithm to derive the most suitable privacy-protection policy for achieving the optimal overall performance. The simulation results show that FLPP has an advantage of 8 similar to 34 in overall performance. This demonstrates that our scheme can enable data to be shared securely and accurately.
机译:在移动边缘计算中,不同设备之间的数据共享和分析对于社会创新和发展具有重要价值。实现这一目标的限制是数据隐私风险。因此,现有的研究主要集中在提高数据隐私保护能力上。一方面,通过联邦学习将原始数据转换为模型参数进行传输,避免了直接的数据泄露。另一方面,通过隐私保护技术进一步增强了联邦学习的安全性,以防御推理攻击。但是,隐私保护技术可能会在提高安全性的同时降低数据的训练准确性。特别是在动态移动边缘计算场景中,权衡数据安全性和准确性是一个重大挑战。为了解决这个问题,我们提出了一种基于联邦学习的隐私保护方案,即FLPP。然后,构建分层自适应差分隐私模型,在不同情境下动态调整隐私保护级别。最后,我们设计了一种差分进化算法,以推导出最适合的隐私保护策略,以实现最优的整体性能。仿真结果表明,FLPP在整体性能上具有8的优势,与34%相似。这表明我们的方案可以使数据安全准确地共享。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号