首页> 外文期刊>computational intelligence and neuroscience >A Multiphase Semistatic Training Method for Swarm Confrontation Using Multiagent Deep Reinforcement Learning
【24h】

A Multiphase Semistatic Training Method for Swarm Confrontation Using Multiagent Deep Reinforcement Learning

机译:一种基于多智能体深度强化学习的群体对抗多阶段半静态训练方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a multiphase semistatic training method for swarm confrontation using multi-agent deep reinforcement learning. In particular, we build a swarm confrontation game, the 3V3 tank fight, based on the Unity platform and train the agents by a MDRL algorithm called MA-POCA, coming with the ML-Agent toolkit. By multiphase learning, we split the traditional single training phase into multiple consecutive training phases, where the performance level of the strong team for each phase increases in an incremental way. On the other hand, by semistatic learning, the strong team in all phases will stop learning when fighting against the weak team, which reduces the possibility that the weak team keeps being defeated and learns nothing at all. Comprehensive experiments prove that, in contrast to the traditional single-phase training method, the multiphase semistatic training method proposed in this paper can significantly increase the training efficiency, shedding lights on how the weak could learn from the strong with less time and computational cost.
机译:在本文中,我们提出了一种基于多智能体深度强化学习的群体对抗多阶段半静态训练方法。特别是,我们基于Unity平台构建了一个群体对抗游戏,即3V3坦克战,并通过称为MA-POCA的MDRL算法训练代理,该算法带有ML-Agent工具包。通过多阶段学习,我们将传统的单一训练阶段拆分为多个连续的训练阶段,每个阶段的强势团队的表现水平都会以增量方式提高。另一方面,通过半静态学习,强队在与弱队对战时,各个阶段都会停止学习,这降低了弱队不断被击败而什么也没学到的可能性。综合实验证明,与传统的单阶段训练方法相比,本文提出的多阶段半静态训练方法能够显著提高训练效率,揭示了弱者如何以更少的时间和计算成本向强者学习。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号