首页> 外文期刊>Transportation research, Part C. Emerging technologies >Geometric information constraint 3D object detection from LiDAR point cloud for autonomous vehicles under adverse weather
【24h】

Geometric information constraint 3D object detection from LiDAR point cloud for autonomous vehicles under adverse weather

机译:恶劣天气下自动驾驶汽车LiDAR点云的几何信息约束三维目标检测

获取原文
获取原文并翻译 | 示例

摘要

3D object detection, as the core of the autonomous vehicle perception module, is essential for efficient transportation and comfortable experiences. However, the challenge of 3D object detection under adverse weather conditions hinders the advancement of autonomous vehicles to higher levels. Hence, achieving accurate 3D object detection under adverse weather conditions is increasingly crucial as it forms the foundation for trajectory planning and driving strategy making in autonomous vehicles, thereby revolutionizing transportation modes for both goods and passengers. Advances in Light Detection and Ranging (LiDAR) technology have facilitated the development of 3D object detection in the past few years. Adverse weather, which inevitably occurs in real-world driving scenarios, could degrade measurement accuracy and point density of LiDAR and lead to particle interference. Detecting accurate 3D bounding boxes from sparse, incomplete point clouds with particle interference is difficult. Therefore, this research presents a novel geometric information constraint network for 3D object detection tasks from LiDAR point clouds under adverse weather (GIC-Net). In this study, we focus on how to incorporate geometric location information and line geometric feature information into the network against adverse weather. Further, we propose a geometric location constrained backbone module (GLC) to reduce rain and snow particle interference and ensure sufficient receptive fields. Then, we design a line geometric feature constraint module (LGFC) to add line constraints of 3D bounding boxes into the training process. Finally, a line loss function is designed, and features from the GLC and LGFC modules are fed into the multi-task detection head for accurate 3D bounding box prediction. Experiments on the Canadian Adverse Driving Conditions (CADC) autonomous vehicle dataset demonstrate the superiority of our method over six other state-of-the-art methods under adverse weather, which is at least 13.32 , 4.67 , and 10.44 mAP higher than the other compared methods in the car, truck, and pedestrian classes respectively. Also, we further verify the better generalization ability of our network compared to other methods.
机译:3D物体检测作为自动驾驶车辆感知模块的核心,对于高效的运输和舒适的体验至关重要。然而,在恶劣天气条件下进行3D物体检测的挑战阻碍了自动驾驶汽车向更高水平的发展。因此,在恶劣天气条件下实现精确的3D目标检测变得越来越重要,因为它为自动驾驶汽车的轨迹规划和驾驶策略制定奠定了基础,从而彻底改变了货物和乘客的运输方式。在过去几年中,光探测和测距 (LiDAR) 技术的进步促进了 3D 物体检测的发展。在真实驾驶场景中不可避免地会发生恶劣天气,可能会降低激光雷达的测量精度和点密度,并导致粒子干扰。从具有粒子干涉的稀疏、不完整的点云中检测精确的 3D 边界框是很困难的。因此,本文提出了一种用于恶劣天气下LiDAR点云三维目标检测任务的新型几何信息约束网络(GIC-Net)。在这项研究中,我们重点研究了如何在恶劣天气下将几何位置信息和线几何特征信息融入网络。此外,本文提出了一种几何位置约束骨干模块(GLC),以减少雨雪粒子干扰,保证足够的感受野。然后,我们设计了一个线几何特征约束模块(LGFC),将三维边界框的线约束添加到训练过程中。最后,设计了线损函数,将GLC和LGFC模块的特征输入到多任务检测头中,以实现准确的3D边界框预测。在加拿大不利驾驶条件(CADC)自动驾驶车辆数据集上的实验表明,在恶劣天气下,我们的方法优于其他六种最先进的方法,分别比其他比较方法在汽车、卡车和行人类别中高出至少13.32%、4.67%和10.44%的mAP。此外,我们进一步验证了与其他方法相比,我们的网络具有更好的泛化能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号