首页> 外文期刊>Reliability engineering & system safety >Simulation-free reliability analysis with importance sampling-based adaptive training physics-informed neural networks: Method and application to chloride penetration
【24h】

Simulation-free reliability analysis with importance sampling-based adaptive training physics-informed neural networks: Method and application to chloride penetration

机译:基于重要性采样的免仿真可靠性分析 基于物理训练的物理信息神经网络:氯化物渗透的方法和应用

获取原文
获取原文并翻译 | 示例

摘要

? 2024 Elsevier LtdSurrogate model-based reliability analysis aims at building a cheap-to-evaluate mathematical model as a substitute for the original performance function to enhance computational efficiency. Data-driven surrogate models have been popularly studied from a perspective of active learning. On the other hand, Physics-informed Neural Networks, called PINNs, have recently gained much attention as a physics-informed surrogate model to directly solve partial differential equations. Building on the capability of avoiding the simulation of traditional numerical solvers such as the finite element analysis, the PINN-based reliability analysis can achieve highly efficient simulation-free uncertainty quantification. This paper focuses on the development of the PINN-based reliability analysis method and its application in practical engineering applications. Reliability analysis with Importance Sampling-based Adaptive Training Physics-informed Neural Networks (IAT-PINN-RA) is proposed in this work. Compared with the existing PINN-based reliability analysis methods, IAT-PINN-RA introduces a pre-training stage for the establishment of the importance sampling distribution, and therefore achieves better performance when handling rare events. The modeling and reliability analysis of chloride penetration, which can pose serious challenges to the durability of concrete structures, are investigated. A practical example demonstrates the feasibility of using PINNs to model this physical phenomenon and the performance of the proposed method to achieve accurate and efficient reliability analysis results.
机译:?2024 Elsevier Ltd基于替代模型的可靠性分析旨在构建一个廉价的、易于评估的数学模型,作为原始性能函数的替代品,以提高计算效率。从主动学习的角度来看,数据驱动的代理模型已经得到了广泛的研究。另一方面,物理信息神经网络(称为PINNs)最近作为一种物理信息代理模型而受到广泛关注,用于直接求解偏微分方程。基于PINN的可靠性分析技术在避免传统数值求解器(如有限元分析)仿真的基础上,实现了高效的无仿真不确定性量化。本文重点介绍了基于PINN的可靠性分析方法的发展及其在实际工程应用中的应用。该文提出基于重要性抽样的自适应训练物理信息神经网络(IAT-PINN-RA)进行可靠性分析。与现有的基于PINN的可靠性分析方法相比,IAT-PINN-RA引入了预训练阶段来建立重要性抽样分布,因此在处理罕见事件时取得了更好的性能。研究了氯化物渗透的建模和可靠性分析,这对混凝土结构的耐久性提出了严重的挑战。通过一个实际算例验证了利用PINNs对这种物理现象进行建模的可行性,并证明了所提方法在获得准确、高效的可靠性分析结果方面的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号