...
首页> 外文期刊>RSC Advances >Bioapplication of graphene oxide derivatives: drug/gene delivery, imaging, polymeric modification, toxicology, therapeutics and challenges
【24h】

Bioapplication of graphene oxide derivatives: drug/gene delivery, imaging, polymeric modification, toxicology, therapeutics and challenges

机译:氧化石墨烯衍生物的生物应用:药物/基因递送,成像,聚合物修饰,毒理学,治疗学和挑战

获取原文
获取原文并翻译 | 示例
           

摘要

Due to the wide range and various applications of graphene in multidisciplinary fields, such as electronics, solar cells, biomedicine, bioengineering, drug delivery, gene delivery and semiconductors, graphene and its derivatives have attracted most significant interest of diverse group of scientists in the last decades. Besides numerous applications in electrical and mechanical fields, their non-invasive biomedical imaging properties allow their wide-spread biological applications. Optical imaging probes play a pivotal role in early cancer detection, image based surgery, disease diagnosis and cellular imaging. Graphene has been widely studied in drug delivery systems due to its unique features and comparatively lesson-toxic properties in biological systems, thus promoting graphene quantum dots as potential organic optical imaging agents to substitute toxic cadmium or tellurium quantum dots. Many groups have also focused on different polymeric modification strategies to enhance the biocompatibility as well as the applications of graphene. In this review, we have summarized recent advances in graphene-based applications, and focused on the relation between chemical structure and polymeric modification with bio-safety issues. The lack of adequate biosafety studies and understanding of the interaction between graphene derivatives and biomolecules has hindered their progress in biomedical and biological applications. To proceed with biological applications of graphene derivatives, such as the development of graphene-based therapeutics and drug delivery systems, the research community must understand how graphene derivatives interact with cell lines and how they accumulate into cells. We also need to learn the fate of graphene derivatives in vivo once it invasively enters into a biological system.
机译:由于石墨烯在电子,太阳能电池,生物医学,生物工程,药物传递,基因传递和半导体等多学科领域中的广泛应用和广泛应用,石墨烯及其衍生物最近吸引了众多科学家的极大兴趣。几十年。除了在电气和机械领域的众多应用之外,它们的非侵入性生物医学成像特性还使其能够广泛应用于生物学领域。光学成像探头在早期癌症检测,基于图像的手术,疾病诊断和细胞成像中起着关键作用。石墨烯由于其独特的特性以及在生物系统中相对较少/无毒的特性而在药物输送系统中得到了广泛的研究,因此促进了石墨烯量子点作为潜在的有机光学显像剂来替代有毒的镉或碲量子点。许多小组还致力于提高聚合物的生物相容性以及石墨烯的应用的不同聚合物改性策略。在这篇综述中,我们总结了石墨烯基应用的最新进展,并将重点放在化学结构与具有生物安全性问题的聚合物改性之间的关系上。缺乏足够的生物安全性研究和对石墨烯衍生物与生物分子之间相互作用的理解,阻碍了它们在生物医学和生物应用中的进展。为了继续进行石墨烯衍生物的生物学应用,例如基于石墨烯的治疗剂和药物递送系统的开发,研究人员必须了解石墨烯衍生物如何与细胞系相互作用以及它们如何积累到细胞中。一旦石墨烯衍生物侵入生物系统,我们还需要在体内学习石墨烯衍生物的命运。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号