首页> 外文期刊>RSC Advances >Theoretical studies on gas-phase kinetics and mechanism of H-abstraction reaction from methanol by ClO and BrO radicals
【24h】

Theoretical studies on gas-phase kinetics and mechanism of H-abstraction reaction from methanol by ClO and BrO radicals

机译:ClO和BrO自由基催化甲醇脱氢反应的气相动力学及机理的理论研究

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The gas-phase kinetics and mechanism of two channel hydrogen (H) abstraction reaction of methanol (CH3OH) by halogen monoxide (XO, X = Cl, Br) radical has been investigated using theoretical approach. The two H-abstraction channels followed are: hydroxyl H-atom or methyl H-atom of methanol (CH3OH). The geometry optimization and frequency calculations were performed at M06-2X method and cc-pVTZ basis set. Single point energy calculation of all the species were computed at high level CCSD(T)/cc-pVTZ theory on the M06-2X/cc-pVTZ optimized structure. Weak intermolecular pre-reactive and post-reactive complexes were located at the entrance and exit channel respectively on the potential energy surfaces of all the H-abstraction reactions. The rate constants (k) and branching ratio (phi) of all possible channels were calculated as a function of temperature for a wide range of temperature 200-2500 K. The rate constants were estimated using canonical variational transition state theory (CVT) combined with an Eckart tunneling correction and hindered rotor approximation for low frequency torsional modes. The rate constant calculation shows that the reaction for the H-abstraction from methyl group of CH3OH by XO radical leading to hydroxymethyl (CH2OH) radical is predominant over the hydroxyl group H-abstraction reaction forming methoxy (CH3O) radical. Arrhenius equation using three parameters was obtained by fitting the kinetic data for the two channels of H-abstraction by ClO and BrO radicals. The overall rate expression, in units of cm(3) per molecule per s, with ClO radical is found to be k(ov1)(T) = 3.92 x 10(-19)T(1.63) exp(-2062/T) and with BrO radical it is k(ov2)(T) = 1.53 x 10(-20)T(2.41) exp(-2206/T) for the temperature range 200-2500 K.
机译:采用理论方法研究了甲醇(CH3OH)与一氧化卤素(XO,X = Cl,Br)自由基进行两通道氢(H)夺取反应的气相动力学及其机理。随后的两个H吸收通道是:甲醇(CH3OH)的羟基H原子或甲基H原子。几何优化和频率计算是在M06-2X方法和cc-pVTZ基集下进行的。在M06-2X / cc-pVTZ优化结构的高层CCSD(T)/ cc-pVTZ理论下计算了所有物种的单点能量。弱的分子间反应前和反应后复合物分别位于所有H吸收反应的势能面上的入口和出口通道。在200-2500 K的宽温度范围内,计算所有可能通道的速率常数(k)和分支比(phi)作为温度的函数。低频扭转模式的Eckart隧道校正和受阻转子逼近。速率常数计算表明,XO自由基从CH3OH的甲基基团吸出H的反应导致形成羟甲基(CH2OH)自由基的反应比形成甲氧基(CH3O)自由基的羟基吸氢反应的反应主要。通过拟合ClO和BrO自由基的两个H吸收通道的动力学数据,获得了使用三个参数的Arrhenius方程。发现带有ClO自由基的总速率表达(以每分子每s cm(3)的单位)为k(ov1)(T)= 3.92 x 10(-19)T(1.63)exp(-2062 / T)对于BrO自由基,在200-2500 K的温度范围内,k(ov2)(T)= 1.53 x 10(-20)T(2.41)exp(-2206 / T)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号