首页> 外文期刊>Radiation measurements >Microdosimetric modelling of the relative efficiency of thermolumine scent materials
【24h】

Microdosimetric modelling of the relative efficiency of thermolumine scent materials

机译:热发光材料相对效率的微剂量模拟

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Thermoluminescence (TL) dosimetry relies on evaluating the dose absorbed in the TL detector by measuring the light output by the detector, i.e. by the TL glow-curve analysis. However, the absolute efficiency of the TL light emission per unit dose of ionizing radiation absorbed in the detector is known to depend on the energy and quality (ionization density) of this radiation. Moreover, as the TL light is absorbed in the detector itself, the spatial distribution of energy deposition events inside the detector also needs to be considered. It is convenient to describe the response of the detector (TL output per unit dose) relative to that after a dose of sparsely ionizing reference radiation, such as Cs-137 gamma-rays, via relative efficiency, eta(igamma), defined as the TL light signal emitted by the TL detector per unit imparted energy of radiation of the type i, normalized to the signal per unit imparted energy of this reference radiation. Microdosimetric models have provided an insight as to the variation of eta(igamma), with the energy and ionization density, related to the spatial distribution of ionizations and excitations produced by the ionizing radiation in the detector, as well as some experimental factors related to the TL light transport within the detector. To study the variation of eta(igamma), with LET in LiF:Mg, Ti detectors irradiated by heavy charged particles (high-LET radiation), the most successful approach was the track structure model, based on the radial distribution of dose (RDD) around the ion tracks. For low-LET radiation (photons, electrons) the microdosimetric model has been successfully applied to predict eta(igamma), for LiF:Mg,Ti, LiF:Mg,Cu,P, and CaF2:Tm TL detectors, to explain the discrepancy between the measured and predicted photon-energy response of these detectors. (C) 2004 Elsevier Ltd. All rights reserved.
机译:热发光(TL)剂量测定法依赖于通过测量检测器(即通过TL辉光曲线分析)输出的光来评估在TL检测器中吸收的剂量。但是,已知检测器中吸收的每单位​​剂量电离辐射的TL发光的绝对效率取决于该辐射的能量和质量(电离密度)。此外,由于TL光被检测器本身吸收,因此还需要考虑检测器内部能量沉积事件的空间分布。通过相对效率eta(igamma)可以很方便地描述探测器的响应(每单位剂量的TL输出)相对于一定剂量的稀疏电离参考辐射(例如Cs-137γ射线)后的响应。由TL检测器发射的TL光信号每单位赋予类型i的辐射能量,归一化为该参考辐射的每单位赋予信号的能量。微剂量模型提供了关于eta(igamma)随能量和电离密度的变化的见解,该变化与探测器中电离辐射产生的电离和激发的空间分布有关,以及与电离辐射有关的一些实验因素。 TL光在检测器内的传输。为了研究eta(igamma)的变化,用重电荷粒子(高LET辐射)辐照LiF:Mg,Ti检测器中的LET,最成功的方法是基于剂量的径向分布(RDD)的轨道结构模型)在离子轨道周围。对于低LET辐射(光子,电子),微剂量模型已成功应用于LiF:Mg,Ti,LiF:Mg,Cu,P和CaF2:Tm TL检测器的eta(igamma)预测,以解释差异在这些探测器的测量和预测的光子能量响应之间。 (C)2004 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号