首页> 外文期刊>IEEE transactions on mobile computing >CROMOSim: A Deep Learning-Based Cross-Modality Inertial Measurement Simulator
【24h】

CROMOSim: A Deep Learning-Based Cross-Modality Inertial Measurement Simulator

机译:

获取原文
获取原文并翻译 | 示例

摘要

With the prevalence of wearable devices, inertial measurement unit (IMU) data has been utilized in monitoring and assessing human mobility such as human activity recognition (HAR) and human pose estimation (HPE). Training deep neural network (DNN) models for these tasks require a large amount of labelled data, which are hard to acquire in uncontrolled environments. To mitigate the data scarcity problem, we design CROMOSim, a cross-modality sensor simulator that simulates high fidelity virtual IMU sensor data from motion capture systems or monocular RGB cameras. It utilizes a skinned multi-person linear model (SMPL) for 3D body pose and shape representations to enable simulation from arbitrary on-body positions. Then a DNN model is trained to learn the functional mapping from imperfect trajectory estimations in a 3D SMPL body tri-mesh due to measurement noise, calibration errors, occlusion and other modelling artifacts, to IMU data. We evaluate the fidelity of CROMOSim simulated data and its utility in data augmentation on various HAR and HPE datasets. Extensive empirical results show that the proposed model achieves a 6.7 improvement over baseline methods in a HAR task.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号