首页> 外文期刊>Remote Sensing of Environment: An Interdisciplinary Journal >Separating physiologically and directionally induced changes in PRI using BRDF models
【24h】

Separating physiologically and directionally induced changes in PRI using BRDF models

机译:使用BRDF模型分离生理和方向引起的PRI变化

获取原文
获取原文并翻译 | 示例
           

摘要

Monitoring of photosynthetic efficiency (epsilon) over space and time is a critical component of climate change research as it is a major determinant of the amount of carbon accumulated by terrestrial ecosystems. While the past decade has seen progress in the remote estimation of c at the leaf, canopy and stand level using the photochemical reflectance index PRI (based on the normalized difference of reflectance at 531 and 570 nm), little is known about the temporal and spatial requirements for up-scaling PRI to landscape and global levels using satellite observations. One potential way to investigate these requirements is using automated tower-based remote sensing platforms, which observe stand level reflectance with high spatial, temporal, and spectral resolution. Prediction of epsilon from PRI diurnally or over a full year requires observations of canopy reflectance over multiple view and sun-angles. As a result, these observations are subject to directional reflectance effects which can be interpreted in terms of the bidirectional reflectance distribution function (BRDF) using semi-empirical kernel driven models. These semi-empirical models use a combination of physically based BRDF shapes and empirical observations to standardize rnulti-angular observations to a common viewing and illumination geometry. Directional reflectance effects are thereby modeled as a linear superposition of mathematical kernels, representing the bi-direction variation in reflectance from isotropic, geometric, and volumetric scattering components of the vegetation canopy. However, because variations in plant physiological conditions can also introduce bidirectional reflectance variations, we introduce an approach to separate bidirectional effects arising purely from plant physiological status from other effects by stratifying PRI observations into categories based on environmental conditions for which the expected physiological variability is low. Within each of these PRI strata, the derived physically based BRDF shapes were used to standardize multi-angular PRI measurements to a common viewing and illumination geometry. The method significantly enhanced the relationship found between PRI and epsilon (from r(2)=0.38 for the directionally uncorrected case to r(2)=0.82 for the directionally corrected case) from data measured continuously over the course of 1 year over an evergreen conifer forest using an automated platform. Results show that isotropic PRI scattering is highly correlated to changes in epsilon, while geometric scattering can be related to canopy level shading. Instrumentation and approaches such as the one demonstrated in this study may be integrated into current efforts aiming at predicting epsilon at global scales using satellite observations. (C) 2008 Elsevier Inc. All rights reserved.
机译:监测空间和时间上的光合作用效率(ε)是气候变化研究的关键组成部分,因为它是陆地生态系统积碳量的主要决定因素。在过去的十年中,使用光化学反射率PRI(基于531和570 nm的归一化反射率差异)对叶片,冠层和林分水平的c进行远程估计已取得进展,但对时空的了解却很少使用卫星观测将PRI扩大到景观和全球水平的要求。研究这些要求的一种可能方法是使用基于塔的自动化遥感平台,该平台以高空间,时间和光谱分辨率观察展位水平的反射率。每天或全年要从PRI预测epsilon,需要观察多个视角和太阳角度的树冠反射率。结果,这些观察结果会受到定向反射率影响,可以使用半经验核驱动模型根据双向反射率分布函数(BRDF)进行解释。这些半经验模型结合了基于物理的BRDF形状和经验观察,以将多角度观察标准化为常见的观察和照明几何形状。因此,将方向性反射效果建模为数学核的线性叠加,表示来自植被冠层各向同性,几何和体积散射分量的双向反射率变化。但是,由于植物生理条件的变化也可能导致双向反射率变化,因此我们引入了一种方法,通过将PRI观测值根据预期的生理变异性较低的环境条件进行分类,从而将纯粹源自植物生理状态的双向影响与其他影响分开。在这些PRI层中的每个层中,派生的基于物理的BRDF形状用于将多角度PRI测量标准化为常见的观察和照明几何形状。该方法显着增强了PRI和epsilon之间的关系(从无方向性情况下的r(2)= 0.38到有方向性情况下的r(2)= 0.82),是从常绿一年内连续测量的数据得出的使用自动化平台的针叶林。结果表明,各向同性PRI散射与ε的变化高度相关,而几何散射可能与冠层阴影有关。诸如本研究中所展示的仪器和方法可能被整合到当前的工作中,这些工作旨在利用卫星观测来预测全球范围的ε。 (C)2008 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号