首页> 外文期刊>Reports on Progress in Physics >Multiscale gyrokinetics for rotating tokamak plasmas: Fluctuations, transport and energy flows
【24h】

Multiscale gyrokinetics for rotating tokamak plasmas: Fluctuations, transport and energy flows

机译:旋转托卡马克等离子体的多尺度动能动力学:涨落,传输和能量流

获取原文
           

摘要

This paper presents a complete theoretical framework for studying turbulence and transport in rapidly rotating tokamak plasmas. The fundamental scale separations present in plasma turbulence are codified as an asymptotic expansion in the ratio = _(ρi/a) of the gyroradius to the equilibrium scale length. Proceeding order by order in this expansion, a set of coupled multiscale equations is developed. They describe an instantaneous equilibrium, the fluctuations driven by gradients in the equilibrium quantities, and the transport-timescale evolution of mean profiles of these quantities driven by the interplay between the equilibrium and the fluctuations. The equilibrium distribution functions are local Maxwellians with each flux surface rotating toroidally as a rigid body. The magnetic equilibrium is obtained from the generalized Grad-Shafranov equation for a rotating plasma, determining the magnetic flux function from the mean pressure and velocity profiles of the plasma. The slow (resistive-timescale) evolution of the magnetic field is given by an evolution equation for the safety factor q. Large-scale deviations of the distribution function from a Maxwellian are given by neoclassical theory. The fluctuations are determined by the 'high-flow' gyrokinetic equation, from which we derive the governing principle for gyrokinetic turbulence in tokamaks: the conservation and local (in space) cascade of the free energy of the fluctuations (i.e. there is no turbulence spreading). Transport equations for the evolution of the mean density, temperature and flow velocity profiles are derived. These transport equations show how the neoclassical and fluctuating corrections to the equilibrium Maxwellian act back upon the mean profiles through fluxes and heating. The energy and entropy conservation laws for the mean profiles are derived from the transport equations. Total energy, thermal, kinetic and magnetic, is conserved and there is no net turbulent heating. Entropy is produced by the action of fluxes flattening gradients, Ohmic heating and the equilibration of interspecies temperature differences. This equilibration is found to include both turbulent and collisional contributions. Finally, this framework is condensed, in the low-Mach-number limit, to a more concise set of equations suitable for numerical implementation.
机译:本文为研究快速旋转托卡马克等离子体中的湍流和输运提供了完整的理论框架。等离子体湍流中存在的基本尺度分离被编码为陀螺半径与平衡尺度长度之比= _(ρi/ a)的渐近扩展。在此扩展中按顺序进行,开发了一组耦合的多尺度方程。他们描述了一个瞬时平衡,由平衡量的梯度驱动的波动,以及由平衡和波动之间的相互作用驱动的这些量的平均分布的运输时标演化。平衡分布函数是局部麦克斯韦函数,每个通量表面都像一个刚性物体一样呈环形旋转。从旋转的等离子体的广义Grad-Shafranov方程获得磁平衡,并根据等离子体的平均压力和速度曲线确定磁通函数。磁场的缓慢(电阻时标)演化由安全系数q的演化方程式给出。新古典理论给出了麦克斯韦分布函数的大规模偏差。波动是由“高流动”的动力学方程确定的,由此我们推导出托卡马克中的动力学动荡的控制原理:波动的自由能的守恒和局部(空间)级联(即没有湍流扩散) )。得出用于平均密度,温度和流速分布图演变的运输方程。这些输运方程式说明了对平衡麦克斯韦方程的新古典和波动修正如何通过通量和加热作用回到平均轮廓上。均值曲线的能量和熵守恒律是从输运方程式导出的。保留了总能量,包括热能,动能和磁能,并且没有净湍流加热。熵是由通量变平梯度,欧姆加热和种间温差平衡所产生的。发现这种平衡包括湍流和碰撞贡献。最后,在低马赫数的范围内,该框架被浓缩为适用于数值实现的更简洁的方程组。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号