首页> 外文期刊>Hydrogeology journal >Making kriging consistent with flow equations: application of kriging with numerical covariances for estimating a contamination plume
【24h】

Making kriging consistent with flow equations: application of kriging with numerical covariances for estimating a contamination plume

机译:

获取原文
获取原文并翻译 | 示例

摘要

When the data are few, kriging hydraulic head or concentration with usual variogram models can lead to physically inconsistent results, because the nonstationarity induced by the flow or transport equations is not taken into account properly. Several methods have been proposed to account for these equations in geostatistical estimation. A recent and general approach consists of incorporating them through specific covariance models. A set of random fields sampling uncertain parameters (e.g. hydraulic conductivity) is first used as the input of a flow simulator. Empirical "numerical" spatial covariances are then calculated between pairs of points x and x' for the variable of interest (e.g. hydraulic head, concentration) on the corresponding set of flow simulator outputs. These nonstationary "numerical" covariances are consistent with the specific spatial variability of hydraulic head or concentrations, and they are used in the estimation. In this paper, flow-and-transport simulations are thus combined with kriging to estimate contaminant concentrations in groundwater. A nonstationary Gaussian anamorphosis in introduced for nonlinear estimation so that the estimate of the concentration is positive. The method is first validated on synthetic data and then on real data from a two-dimensional cross-section of an aquifer downstream of a trench containing radioactive waste in the Chernobyl area, Ukraine. Kriging with the output of a simplified flow model as external drift and kriging with numerical covariances reproduce the spatial variability of the contaminant plume much bet-ter than usual (ordinary) kriging based on observations only. The comparison between the two best estimators is discussed.
机译:当数据很少时,使用通常的变差图模型对水力水头或浓度进行克里金法可能会导致物理上不一致的结果,因为没有正确考虑流量或输运方程引起的非平稳性。已经提出了几种方法来解释地统计估计中的这些方程。最近的一种通用方法包括通过特定的协方差模型将它们合并。首先使用一组随机场对不确定参数(例如水力传导率)进行采样,作为流量模拟器的输入。然后,在相应一组流量模拟器输出上计算感兴趣的变量(例如水力水头、浓度)的点对 x 和 x' 之间的经验“数值”空间协方差。这些非平稳的“数值”协方差与水力水头或浓度的特定空间变异性一致,并用于估计。因此,本文将流动和输运模拟与克里金法相结合,以估计地下水中的污染物浓度。引入非平稳高斯变形进行非线性估计,使浓度的估计值为正。该方法首先在合成数据上进行验证,然后在乌克兰切尔诺贝利地区含有放射性废物的沟渠下游含水层的二维横截面的真实数据上进行验证。将简化流动模型的输出作为外部漂移进行克里金法,并使用数值协方差进行克里金法再现污染物羽流的空间变异性,这比仅基于观测的通常(普通)克里金法要多得多。讨论了两个最佳估计器之间的比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号