...
【24h】

Two numerical methods for the elliptic Monge-Ampère equation

机译:椭圆Monge-Ampère方程的两种数值方法

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The numerical solution of the elliptic Monge-Ampère Partial Differential Equation has been a subject of increasing interest recently [Glowinski, in 6th International Congress on Industrial and Applied Mathematics, ICIAM 07, Invited Lectures (2009) 155-192; Oliker and Prussner, Numer. Math. 54 (1988) 271-293; Oberman, Discrete Contin. Dyn. Syst. Ser. B 10 (2008) 221-238; Dean and Glowinski, in Partial differential equations, Comput. Methods Appl. Sci. 16 (2008) 43-63; Glowinski et al., Japan J. Indust. Appl. Math. 25 (2008) 1-63; Dean and Glowinski, Electron. Trans. Numer. Anal. 22 (2006) 71-96; Dean and Glowinski, Comput. Methods Appl. Mech. Engrg. 195 (2006) 1344-1386; Dean et al., in Control and boundary analysis, Lect. Notes Pure Appl. Math. 240 (2005) 1-27; Feng and Neilan, SIAM J. Numer. Anal. 47 (2009) 1226-1250; Feng and Neilan, J. Sci. Comput. 38 (2009) 74-98; Feng and Neilan, http://arxiv.org/abs/ 0712.1240v1; G. Loeper and F. Rapetti, C. R. Math. Acad. Sci. Paris 340 (2005) 319-324]. There are already two methods available [Oliker and Prussner, Numer. Math. 54 (1988) 271-293; Oberman, Discrete Contin. Dyn. Syst. Ser. B 10 (2008) 221-238] which converge even for singular solutions. However, many of the newly proposed methods lack numerical evidence of convergence on singular solutions, or are known to break down in this case. In this article we present and study the performance of two methods. The first method, which is simply the natural finite difference discretization of the equation, is demonstrated to be the best performing method (in terms of convergence and solution time) currently available for generic (possibly singular) problems, in particular when the right hand side touches zero. The second method, which involves the iterative solution of a Poisson equation involving the Hessian of the solution, is demonstrated to be the best performing (in terms of solution time) when the solution is regular, which occurs when the right hand side is strictly positive.
机译:椭圆蒙格-安培偏微分方程的数值解最近引起人们越来越多的关注[Glowinski,在第六届国际工业和应用数学大会上,ICIAM 07,受邀演讲(2009)155-192;欧默勒和普鲁士纳(Numer)。数学。 54(1988)271-293; Oberman,离散继续。达因Syst。老师B 10(2008)221-238; Dean和Glowinski,在偏微分方程中,计算。方法应用。科学16(2008)43-63; Glowinski等,日本J.Indust。应用数学。 25(2008)1-63; Dean和Glowinski,Electron。反式Numer。肛门22(2006)71-96;院长和Glowinski,计算机。方法应用。机甲gr 195(2006)1344-1386; Dean等人,《控制与边界分析》,Lect。备注Pure Appl。数学。 240(2005)1-27; Feng和Neilan,SIAM J. Numer。肛门47(2009)1226-1250;冯和内兰,科学杂志。计算38(2009)74-98; Feng和Neilan,http://arxiv.org/abs/ 0712.1240v1; G.Loeper和F.Rapetti,C.R。Math。学院科学巴黎340(2005)319-324]。已经有两种方法可用[Oliker和Prussner,Numer。数学。 54(1988)271-293; Oberman,离散继续。达因Syst。老师B 10(2008)221-238],即使对于奇异解也收敛。但是,许多新提出的方法缺乏在奇异解上收敛的数值证据,或者在这种情况下会崩溃。在本文中,我们介绍并研究两种方法的性能。第一种方法,就是方程的自然有限差分离散化,被证明是目前适用于一般(可能是奇异)问题的最佳方法(就收敛性和求解时间而言),特别是在右侧触零。第二种方法涉及涉及解决方案的Hessian的Poisson方程的迭代解决方案,它被证明是有规律的解决方案(在解决方案时间方面)表现最佳(该解决方案在右手边严格为正时发生) 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号