...
首页> 外文期刊>Limnology >Analysis of stream water temperature changes during rainfall events in forested watersheds
【24h】

Analysis of stream water temperature changes during rainfall events in forested watersheds

机译:森林流域降雨过程中溪水温度变化分析。

获取原文
获取原文并翻译 | 示例
           

摘要

Despite continued interest in stream water temperature (Tw) analysis, there are few studies of Tw response to rainfall events at forested watersheds. We examined 61 sets of data on Tw for 21 rainfall events at 16 watersheds with various slope gradients (from 0.08 to 0.56) in four regions of Japan from June 2004 to December 2005. The investigation focused on the changes of specific discharge (ΔQs) and ΔTw at medium-sized watersheds (0.5-100 ha). The results clearly demonstrated different flow patterns expressed by Qs vs. Tw hysteretic loops. Those were clockwise in Period I (April-September) and counterclockwise in Period II (October-March), except for lower slope gradient at Aichi, where counterclockwise loops were observed in both periods. These differences in hysteretic loops could be explained by the differences in Tw and in response times to rainfall between surface/subsurface and groundwater flows. The response times were probably determined by the slope gradient and the vertical level of groundwater. We also found that the changes in air temperature (ΔTa) influenced ΔTw to a lesser degree than Qs. The average rainfall intensities in Period I and Period II (9.3 ± 1.7 and 5.4 ± 0.2 mm/h, respectively) affected the average values of ΔQs and ΔTw (6.62 ± 4.08 mm/h and 1.7 ± 0.4°C; 0.85 ± 0.68 mm/h and 0.9 ± 0.3°C, respectively). This indicates that slope gradient and Qs influenced ΔTw by changing the relative proportions of flow paths. In addition, the water table changes influenced the percentage of groundwater flow to the stream.
机译:尽管对溪流水温(Tw)分析的兴趣一直很高,但很少有人研究Tw对森林流域中降雨事件的响应。我们研究了2004年6月至2005年12月日本四个地区16个具有不同坡度(从0.08到0.56)的流域的21个降雨事件的Tw的61组数据。该研究集中于比流量(ΔQs)和中型集水区(0.5-100公顷)的ΔTw。结果清楚地表明了由Qs与Tw磁滞回线表示的不同流动模式。除了在爱知县较低的坡度梯度(在两个时期均观察到逆时针环路)以外,这些时间段在时期I(4月至9月)中为顺时针,而时期II(10月至3月)为逆时针。磁滞回线中的这些差异可以用Tw的差异以及地表/地下和地下水之间的降雨响应时间来解释。响应时间可能取决于坡度和地下水的垂直高度。我们还发现,气温(ΔTa)的变化对ΔTw的影响程度小于Qs。第一阶段和第二阶段的平均降雨强度(分别为9.3±1.7和5.4±0.2 mm / h)影响ΔQs和ΔTw的平均值(6.62±4.08 mm / h和1.7±0.4°C; 0.85±0.68 mm / h和0.9±0.3°C)。这表明斜率梯度和Qs通过改变流路的相对比例影响了ΔTw。此外,地下水位的变化影响了地下水流向溪流的百分比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号