首页> 外文期刊>Journal of the American Chemical Society >Cation Substitution Strategy for Developing Perovskite Oxide with Rich Oxygen Vacancy-Mediated Charge Redistribution Enables Highly Efficient Nitrate Electroreduction to Ammonia
【24h】

Cation Substitution Strategy for Developing Perovskite Oxide with Rich Oxygen Vacancy-Mediated Charge Redistribution Enables Highly Efficient Nitrate Electroreduction to Ammonia

机译:开发具有富氧空位介导的电荷再分布的钙钛矿氧化物的阳离子替代策略可实现高效的硝酸盐电还原为氨

获取原文
获取原文并翻译 | 示例

摘要

The electrocatalytic nitrate (NO3-) reduction reaction (eNITRR) is a promising method for ammonia synthesis. However, its efficacy is currently limited due to poor selectivity, largely caused by the inherent complexity of the multiple-electron processes involved. To address these issues, oxygen-vacancy-rich LaFe0.9M0.1O3-delta (M = Co, Ni, and Cu) perovskite submicrofibers have been designed from the starting material LaFeO3-delta (LF) by a B-site substitution strategy and used as the eNITRR electrocatalyst. Consequently, the LaFe0.9Cu0.1O3-delta (LF0.9Cu0.1) submicrofibers with a stronger Fe-O hybridization, more oxygen vacancies, and more positive surface potential exhibit a higher ammonia yield rate of 349 +/- 15 mu g h(-1) mg(cat.)(-1) and a Faradaic efficiency of 48 +/- 2 than LF submicrofibers. The COMSOL Multiphysics simulations demonstrate that the more positive surface of LF0.9Cu0.1 submicrofibers can induce NO3- enrichment and suppress the competing hydrogen evolution reaction. By combining a variety of in situ characterizations and density functional theory calculations, the eNITRR mechanism is revealed, where the first proton-electron coupling step (*NO3 + H+ + e(-) -> *HNO3) is the rate-determining step with a reduced energy barrier of 1.83 eV. This work highlights the positive effect of cation substitution in promoting eNITRR properties of perovskites and provides new insights into the studies of perovskite-type electrocatalytic ammonia synthesis catalysts.
机译:电催化硝酸盐(NO3-)还原反应(eNITRR)是一种很有前途的氨合成方法。然而,由于选择性差,其功效目前受到限制,这主要是由于所涉及的多电子过程的固有复杂性造成的。为了解决这些问题,以原材料LaFeO3-delta(LF)为原料,采用B位点取代策略设计了富氧LaFe0.9M0.1O3-δ(M = Co、Ni和Cu)钙钛矿亚微纤维,并用作eNITRR电催化剂。因此,具有更强的Fe-O杂化、更多的氧空位和更多的正表面电位的LaFe0.9Cu0.1O3-δ(LF0.9Cu0.1)亚微纤维表现出更高的氨产率,为349 +/- 15 μ g h(-1) mg(cat.)(-1) 和比 LF 亚超细纤维 48 +/- 2% 的法拉第效率。COMSOL Multiphysics 仿真表明,LF0.9Cu0.1 亚微纤维的正表面更强,可以诱导 NO3- 富集并抑制竞争性析氢反应。通过结合各种原位表征和密度泛函理论计算,揭示了eNITRR机制,其中第一个质子-电子耦合步骤(*NO3 + H+ + e(-) -> *HNO3)是速率决定步骤,能量势垒降低了1.83 eV。本工作强调了阳离子取代对钙钛矿eNITRR性能的积极促进作用,为钙钛矿型电催化氨合成催化剂的研究提供了新的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号