首页> 外文期刊>Shock and vibration >Assembly Quality Inspection of Combine Harvester Based on Whale Algorithm Optimization LSSVM
【24h】

Assembly Quality Inspection of Combine Harvester Based on Whale Algorithm Optimization LSSVM

机译:基于鲸鱼算法优化LSSVM的联合收割机装配质量检测

获取原文
获取原文并翻译 | 示例

摘要

In order to detect the assembly quality of the combine harvester accurately and effectively, a method for the assembly quality inspection of the combine harvester based on the improved whale algorithm (IWOA) to optimize the least square support vector machine is proposed. Aiming at the characteristics of whale optimization algorithm’s weak search ability and easy maturity, this paper introduces the cosine control factor and the sine time-varying adaptive weight to improve it and uses the benchmark function to verify the general adaptability of the algorithm. Combined with the local mean decomposition (LMD), the assembly quality inspection model of the combine harvester was established and applied to the Dongfanghong 4LZ-9A2 combine harvester for experimental verification. The experimental results show that the IWOA proposed in this paper has better optimization ability and adaptability. The average accuracy of the IWOA model proposed in this paper reaches 90.5, which is 4 higher than that of the WOA model, and the standard deviation of the average accuracy is reduced by 0.15, which indicates that the IWOA model has better stability.
机译:为了准确有效地检测联合收割机的装配质量,该文提出一种基于改进鲸鱼算法(IWOA)对联合收割机装配质量进行优化的方法。针对鲸鱼优化算法搜索能力弱、易成熟度等特点,引入余弦控制因子和正弦时变自适应权重进行改进,并利用基准函数验证算法的一般适应性。结合局部平均分解(LMD),建立了联合收割机装配质量检测模型,并应用于东方红4LZ-9A2联合收割机进行实验验证。实验结果表明,本文提出的IWOA具有较好的优化能力和适应性。本文提出的IWOA模型平均精度达到90.5%,比WOA模型高出4%,平均精度标准差降低0.15%,表明IWOA模型具有更好的稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号