首页> 外文期刊>Advanced Materials >Diffusive Memristors with Uniform and Tunable Relaxation Time for Spike Generation in Event-Based Pattern Recognition
【24h】

Diffusive Memristors with Uniform and Tunable Relaxation Time for Spike Generation in Event-Based Pattern Recognition

机译:具有均匀和可调弛豫时间的扩散忆阻器,用于基于事件的模式识别中的尖峰生成

获取原文
获取原文并翻译 | 示例

摘要

A diffusive memristor is a promising building block for brain-inspired computinghardware. However, the randomness in the device relaxation dynamicslimits the wide-range adoption of diffusive memristors in large arrays. In thiswork, the device stack is engineered to achieve a much-improved uniformity inthe relaxation time (standard deviation σ reduced from ≈12 to ≈0.32 ms). Thememristor is further connected with a resistor or a capacitor and the relaxationtime is tuned between 1.13 μs and 1.25 ms, ranging from three orders ofmagnitude. The hierarchy of time surfaces (HOTS) algorithm, to utilize thetunable and uniform relaxation behavior for spike generation, is implemented.An accuracy of 77.3 is achieved in recognizing moving objects in the neuromorphicMNIST (N-MNIST) dataset. The work paves the way for buildingemerging neuromorphic computing hardware systems with ultralow powerconsumption.
机译:扩散忆阻器是类脑计算硬件的一个很有前途的构建模块。然而,器件弛豫动力学的随机性限制了扩散忆阻器在大阵列中的广泛采用。在这项工作中,器件堆栈经过精心设计,可大大提高弛豫时间的均匀性(标准偏差σ从 ≈12 ms 减少到 ≈0.32 ms)。Thememristor 进一步与电阻器或电容器连接,弛豫时间在 1.13 μs 至 1.25 ms 之间调谐,范围为 3 个数量级。实现了时间表面层次结构(HOTS)算法,利用可调和均匀的松弛行为来生成尖峰。在神经形态MNIST (N-MNIST)数据集中识别运动物体的准确率为77.3%。这项工作为构建具有超低功耗的新兴神经形态计算硬件系统铺平了道路。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号