首页> 外文期刊>IEEE transactions on industrial informatics >A Power System Disturbance Classification Method Robust to PMU Data Quality Issues
【24h】

A Power System Disturbance Classification Method Robust to PMU Data Quality Issues

机译:一种针对PMU数据质量问题的电力系统扰动分类方法

获取原文
获取原文并翻译 | 示例

摘要

Data quality issues exist in practical phasor measurement units (PMUs) due to communication errors or signal interferences. As a result, the performances of existing data-driven disturbance classification methods can be significantly affected. In this article, a fast disturbance classification method that is robust to PMU data quality issues is proposed. The impacts of bad PMU measurements on disturbance classification are investigated by analyzing the feature distributions of deep learning methods. A new feature extraction scheme that uses the univariate temporal convolutional denoising autoencoder (UTCN-DAE) is proposed. It allows encoding and decoding univariate disturbance data through a temporal convolutional network to capture the temporal feature representation and is robust to bad data. Based on the features of the frequency and voltage measurements encoded by the UTCN-DAE, a two-stream enhanced network, i.e., the multivariable temporal convolutional denoising network is proposed to achieve optimal feature extraction of multivariate time series by feature fusion. The classification is performed using a multilayered deep neural network and Softmax classifier. Extensive results obtained on the IEEE 39-bus system as well as a large-scale power system in China with field PMU measurements show that the proposed method achieves the highest classification accuracy and computational efficiency as compared to other deep learning algorithms.
机译:由于通信错误或信号干扰,实际相量测量单元 (PMU) 中存在数据质量问题。因此,现有数据驱动的干扰分类方法的性能可能会受到重大影响。本文提出了一种针对PMU数据质量问题的鲁棒性快速扰动分类方法。通过分析深度学习方法的特征分布,研究了不良PMU测量对扰动分类的影响。该文提出一种利用单变量时间卷积去噪自编码器(UTCN-DAE)的特征提取方案。它允许通过时间卷积网络对单变量干扰数据进行编码和解码,以捕获时间特征表示,并且对不良数据具有鲁棒性。基于UTCN-DAE编码的频率和电压测量特征,提出一种双流增强网络,即多变量时间卷积去噪网络,通过特征融合实现多变量时间序列的最优特征提取。使用多层深度神经网络和 Softmax 分类器进行分类。在IEEE 39总线系统以及中国某大型电力系统上通过现场PMU测量获得的大量结果表明,与其他深度学习算法相比,所提方法实现了最高的分类精度和计算效率。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号