首页> 外文期刊>Briefings in bioinformatics >KGETCDA: an efficient representation learning framework based on knowledge graph encoder from transformer for predicting circRNA-disease associations
【24h】

KGETCDA: an efficient representation learning framework based on knowledge graph encoder from transformer for predicting circRNA-disease associations

机译:KGETCDA:基于Transformer知识图谱编码器的高效表示学习框架,用于预测circRNA与疾病的关联

获取原文
获取原文并翻译 | 示例

摘要

Abstract Recent studies have demonstrated the significant role that circRNA plays in the progression of human diseases. Identifying circRNA-disease associations (CDA) in an efficient manner can offer crucial insights into disease diagnosis. While traditional biological experiments can be time-consuming and labor-intensive, computational methods have emerged as a viable alternative in recent years. However, these methods are often limited by data sparsity and their inability to explore high-order information. In this paper, we introduce a novel method named Knowledge Graph Encoder from Transformer for predicting CDA (KGETCDA). Specifically, KGETCDA first integrates more than 10 databases to construct a large heterogeneous non-coding RNA dataset, which contains multiple relationships between circRNA, miRNA, lncRNA and disease. Then, a biological knowledge graph is created based on this dataset and Transformer-based knowledge representation learning and attentive propagation layers are applied to obtain high-quality embeddings with accurately captured high-order interaction information. Finally, multilayer perceptron is utilized to predict the matching scores of CDA based on their embeddings. Our empirical results demonstrate that KGETCDA significantly outperforms other state-of-the-art models. To enhance user experience, we have developed an interactive web-based platform named HNRBase that allows users to visualize, download data and make predictions using KGETCDA with ease. The code and datasets are publicly available at https://github.com/jinyangwu/KGETCDA.
机译:摘要 近期研究证明circRNA在人类疾病进展中具有重要作用。以有效的方式识别circRNA疾病关联(CDA)可以为疾病诊断提供重要的见解。虽然传统的生物实验可能既费时又费力,但近年来计算方法已成为一种可行的替代方案。然而,这些方法通常受到数据稀疏性和无法探索高阶信息的限制。在本文中,我们介绍了一种名为Knowledge Graph Encoder from Transformer的新方法,用于预测CDA(KGETCDA)。具体而言,KGETCDA首先整合了10多个数据库,构建了一个大型异质性非编码RNA数据集,该数据集包含circRNA、miRNA、lncRNA与疾病之间的多重关系。然后,基于该数据集创建生物知识图谱,并应用基于Transformer的知识表示学习和注意力传播层,获得具有准确捕获高阶交互信息的高质量嵌入。最后,利用多层感知器对CDA的嵌入匹配分数进行预测。我们的实证结果表明,KGETCDA明显优于其他最先进的模型。为了增强用户体验,我们开发了一个名为HNRBase的基于Web的交互式平台,允许用户使用KGETCDA轻松可视化,下载数据并进行预测。代码和数据集在 https://github.com/jinyangwu/KGETCDA 上公开提供。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号