首页> 外文期刊>Network Daily News >Hanyang University Reports Findings in Engineering (Classification and concentration estimation of CO and NO2 mixtures under humidity using neural network-assisted pattern recognition analysis)
【24h】

Hanyang University Reports Findings in Engineering (Classification and concentration estimation of CO and NO2 mixtures under humidity using neural network-assisted pattern recognition analysis)

机译:汉阳大学报告工程学研究成果(使用神经网络辅助模式识别分析对湿度下CO和NO2混合物进行分类和浓度估计)

获取原文
获取原文并翻译 | 示例

摘要

By a News Reporter-Staff News Editor at Network Daily News - New researchon Engineering is the subject of a report. According to news originating from Seoul, South Korea, byNewsRx correspondents, research stated, “This study addresses the concerns regarding the cross-sensitivityof metal oxide sensors by building an array of sensors and subsequently utilizing machine earning techniquesto analyze the data from the sensor arrays. Sensors were built using InO Au-ZnO, Au-SnO, and Pt-SnOand they were operated simultaneously in the presence of 25 different concentrations of nitrogen dioxide(NO), carbon monoxide (CO), and their mixtures.”Our news journalists obtained a quote from the research from Hanyang University, “To investigate theeffects of humidity, experiments were conducted to detect 13 distinct CO and NO gas combinations inatmospheres with 40 and 90 relative humidity. Principal component analysis was performed for thenormalized resistance variation collected for a particular gas atmosphere over a certain period, and theresults were used to train deep neural network-based models. The dynamic curves produced by the sensorarray were treated as pixelated images and a convolutional neural network was adopted for classification.An accuracy of 100 was achieved using both models during cross-validation and testing.”According to the news editors, the research concluded: “The results indicate that this novel approachcan eliminate the time-consuming feature extraction process.”
机译:作者:网络日报的新闻记者-新闻编辑 - 工程学的新研究是报告的主题。据来自韩国首尔的NewsRx记者报道,研究称,“本研究通过构建传感器阵列并随后利用机器赚钱技术来分析来自传感器阵列的数据,解决了有关金属氧化物传感器交叉敏感性的问题。传感器是使用 InO Au-ZnO、Au-SnO 和 Pt-SnO 构建的,它们在 25 种不同浓度的二氧化氮 (NO)、一氧化碳 (CO) 及其混合物存在下同时运行。我们的新闻记者从汉阳大学的研究中获得了一句话,“为了研究湿度的影响,我们进行了实验,在相对湿度为40%和90%的大气中检测了13种不同的CO和NO气体组合。对特定气体气氛在一定时期内收集的归一化阻力变化进行了主成分分析,并将结果用于训练基于深度神经网络的模型。将传感器阵列生成的动态曲线视为像素化图像,并采用卷积神经网络进行分类。在交叉验证和测试期间,使用两种模型都实现了 100% 的准确率。根据新闻编辑的说法,该研究得出的结论是:“结果表明,这种新颖的方法可以消除耗时的特征提取过程。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号